Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 117(1): 89, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861000

RESUMO

Strain MP-1014T, an obligate halophilic actinobacterium, was isolated from the mangrove soil of Thandavarayancholanganpettai, Tamil Nadu, India. A polyphasic approach was utilized to explore its phylogenetic position completely. The isolate was Gram-positive, filamentous, non-motile, and coccoid in older cultures. Ideal growth conditions were seen at 30 °C and pH 7.0, with 5% NaCl (W/V), and the DNA G + C content was 73.3%. The phylogenic analysis of this strain based upon 16S rRNA gene sequence revealed 97-99.8% similarity to the recognized species of the genus Isoptericola. Strain MP-1014T exhibits the highest similarity to I. sediminis JC619T (99.7%), I. chiayiensis KCTC19740T (98.9%), and subsequently to I. halotolerans KCTC19646T (98.6%), when compared with other members within the Isoptericola genus (< 98%). ANI scores of strain MP-1014T are 86.4%, 84.2%, and 81.5% and dDDH values are 59.7%, 53.6%, and 34.8% with I. sediminis JC619T, I. chiayiensis KCTC19740T and I. halotolerans KCTC19646T respectively. The major polar lipids of the strain MP-1014T were phosphatidylinositol, phosphatidylglycerol, diphosphotidylglycerol, two unknown phospholipids, and glycolipids. The predominant respiratory menaquinones were MK9 (H4) and MK9 (H2). The major fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C14:0, C15:0, and C16:0. Also, initial genome analysis of the organism suggests it as a biostimulant for enhancing agriculture in saline environments. Based on phenotypic and genetic distinctiveness, the strain MP-1014 T represents the novel species of the genus Isoptericola assigned Isoptericola haloaureus sp. nov., is addressed by the strain MP-1014 T, given its phenotypic, phylogenetic, and hereditary uniqueness. The type strain is MP-1014T [(NCBI = OP672482.1 = GCA_036689775.1) ATCC = BAA 2646T; DSMZ = 29325T; MTCC = 13246T].


Assuntos
Composição de Bases , DNA Bacteriano , Fixação de Nitrogênio , Filogenia , RNA Ribossômico 16S , Tolerância ao Sal , Índia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Áreas Alagadas , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Sedimentos Geológicos/microbiologia , Técnicas de Tipagem Bacteriana , Microbiologia do Solo , Fosfolipídeos/análise , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Actinobacteria/genética , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Actinobacteria/fisiologia
2.
Arch Microbiol ; 206(7): 314, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900289

RESUMO

In the field of metagenomic research, the choice of DNA extraction methods plays a pivotal yet often underestimated role in shaping the reliability and interpretability of microbial community data. This study delves into the impact of five commercially available DNA extraction kits on the analysis of bovine fecal microbiota. Recognizing the importance of accurate DNA extraction in elucidating microbial community dynamics, we systematically assessed DNA yield, quality, and microbial composition across these kits using 16S rRNA gene sequencing. Notably, the FastDNA spin soil kit yielded the highest DNA concentration, while significant variations in quality were observed across kits. Furthermore, differential abundance analysis revealed kit-specific biases that impacted taxa representation. Microbial richness and diversity were significantly influenced by the choice of extraction kit, with QIAamp DNA stool minikit, QIAamp Power Pro, and DNeasy PowerSoil outperforming the Stool DNA Kit. Principal-coordinate analysis revealed distinct clustering based on DNA isolation procedures, particularly highlighting the unique microbial community composition derived from the Stool DNA Kit. This study also addressed practical implications, demonstrating how kit selection influences the concentration of Gram-positive and Gram-negative bacterial taxa in samples. This research highlights the need for consideration of DNA extraction kits in metagenomic studies, offering valuable insights for researchers striving to advance the precision and depth of microbiota analyses in ruminants.


Assuntos
DNA Bacteriano , Fezes , RNA Ribossômico 16S , Animais , Bovinos , Fezes/microbiologia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Metagenômica , Análise de Sequência de DNA , Kit de Reagentes para Diagnóstico/normas , Microbiota/genética
3.
Toxicol Res (Camb) ; 13(3): tfae087, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38845614

RESUMO

Zebrafish being the best animal model to study, every attempt has been made to decipher the toxic mechanism of every fungicide of usage and interest. It is important to understand the multiple targets of a toxicant to estimate the toxic potential in its totality. A total of 22 fungicides of different classes like amisulbrom, azoxystrobin, carbendazim, carboxin, chlorothalonil, difenoconazole, etridiazole, flusilazole, fluxapyroxad, hexaconazole, kresoxim methyl, mancozeb, myclobutanil, prochloraz, propiconazole, propineb, pyraclostrobin, tebuconazole, thiophanate-methyl, thiram, trifloxystrobin and ziram were reviewed and analyzed for their multiple explored targets in zebrafish. Toxic end points in zebrafish are highly informative when it comes to network analysis. They provide a window into the molecular and cellular pathways that are affected by a certain toxin. This can then be used to gain insights into the underlying mechanisms of toxicity and to draw conclusions on the potential of a particular compound to induce toxicity. This knowledge can then be used to inform decisions about drug development, environmental regulation, and other areas of research. In addition, the use of zebrafish toxic end points can also be used to better understand the effects of environmental pollutants on ecosystems. By understanding the pathways affected by a given toxin, researchers can determine how pollutants may interact with the environment and how this could lead to health or environmental impacts.

4.
Bioresour Technol ; 404: 130847, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810708

RESUMO

Carbon dioxide (CO2) poses a significant threat, contributing to global warming and climate change. This study focused on isolating efficient CO2-reducing methanogens and methanotrophs for converting methane into methanol. Samples from diverse regions in India were collected and processed, yielding 82 methanogenic and 48 methylotrophic isolates. Methanogenic isolate M11 produced a higher amount of methane, reaching 2.9 mol L-1 on the sixth day of incubation at 35 °C, pH 7.0, and CO2:H2 (80:20) as feeding rates. Under optimized conditions, isolate M11 effectively converted 8.3 mol CO2 to 7.9 mol methane in 24 h. Methylotrophic isolate M31 demonstrated significant soluble methane monooxygenase activity (450 nmol/ml) and produced 0.4 mol methanol in 24 h. 16S rRNA analysis identified Methanobacterium sp. and Methyloceanibacter sp. among the isolates, elucidating their taxonomic diversity. This study offers valuable insights into methanogens' potential in CO2 sequestration and methane conversion to methanol through methanotrophism, a promising sustainable biofuel production.


Assuntos
Dióxido de Carbono , Metano , Metanol , Metanol/metabolismo , Dióxido de Carbono/metabolismo , Metano/metabolismo , RNA Ribossômico 16S/genética , Filogenia , Sequestro de Carbono , Oxigenases
5.
J Pharm Biomed Anal ; 245: 116149, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678858

RESUMO

A precise, sensitive, accurate, and validated reverse-phase high-performance liquid chromatography (RP-HPLC) method with a bioanalytical approach was utilized to analyze Cabazitaxel (CBZ) in rat plasma. Comparative research on extraction recoveries was performed between traditional liquid-liquid extraction (LLE) and synthesized graphene oxide (GO) based magnetic solid phase extraction (GO@MSPE). The superparamagnetic hybrid nanosorbent was synthesized using the combination of iron oxide and GO and subsequently applied for extraction and bioanalytical quantification of CBZ from plasma by (HPLC-PDA) analysis. Fourier- transform infrared spectroscopy (FT-IR), particle size, scanning electron microscopy (SEM), and x-ray diffraction (XRD) analysis were employed in the characterization of synthesized GO@MSPE nanosorbent. The investigation was accomplished using a shim pack C18 column (150 mm×4.6 mm, 5 µm) with a binary gradient mobile phase consisting of formic acid: acetonitrile: water (0.1:75:25, v/v/v) at a 0.8 mL/min flow rate, and a λmax of 229 nm. The limits of detection (LOD) and quantitation (LOQ) have been determined to be 50 and 100 ng/mL for both LLE and SPE techniques. The linearity range of the approach encompassed from 100 to 5000 ng/mL and was found to be linear (coefficient of determination > 0.99) for CBZ. The proposed method showed extraction recovery of 76.8-88.4% for the synthesized GO@MSPE and 69.3-77.4% for LLE, suggesting that the proposed bioanalytical approach was robust and qualified for all validation parameters within the acceptable criteria. Furthermore, the developed hybrid GO@MSPE nanosorbent with the help of the proposed RP-HPLC method, showed a significant potential for the extraction of CBZ in bioanalysis.


Assuntos
Grafite , Limite de Detecção , Extração Líquido-Líquido , Extração em Fase Sólida , Animais , Cromatografia Líquida de Alta Pressão/métodos , Ratos , Extração Líquido-Líquido/métodos , Grafite/química , Extração em Fase Sólida/métodos , Taxoides/sangue , Taxoides/química , Masculino , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
6.
Toxicol Res (Camb) ; 13(1): tfae019, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380074

RESUMO

Silver nanoparticles are the extensively utilized among all nanoparticles due to their antibacterial and wound healing properties making them highly suitable for medical and pharmaceutical applications. The field of nanoparticle toxicity is an emerging field and the present study aims to assess the biochemical, hematological and genotoxicity in Oreochromis mossambicus exposed to different concentrations of silver nanoparticles for 7 and 14 days. Silver nanoparticles were synthesized by reduction of silver nitrate using trisodium citrate and was characterized using X-ray diffraction, SEM, HRTEM and DLS. Hematological parameters like RBC, WBC, Hb, HCT and MCV and for biochemical analysis, antioxidant enzymes SOD, CAT and GPX and serum enzymes AST, ALT, ACP, ALP and LDH were analyzed. Genotoxicity was studied using comet assay. Results obtained showed decrease in erythrocytes, HCT, Hb and MCV while an increase was noted in WBC on day 7 and 14. The antioxidant enzymes SOD, CAT and GPx showed a decrease and the lipid peroxidation product MDA was elevated. The serum enzymes AST, ALT, ACP ALP and LDH showed an increased activity when compared to control. DNA damage was evident by an increase in % TDNA. The results indicate hematological, biochemical and genotoxicity of silver nanoparticles that might be mediated through ROS generation in O. mossambicus.

7.
Chemosphere ; 352: 141470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367877

RESUMO

A novel fluorometric chemical sensor (PY-2TH) based on 2-thiohydantoin (2TH) in conjugation with pyrene (PY) was designed by facile one-pot Knoevenagel condensation reaction and explored for the sensitive and selective detection of Hg2+ ion in solution and solid state methods. Different analytical techniques like NMR and LC-MS concomitantly confirmed the structure of PY-2TH. Absorption and emission studies demonstrate positive solvatochromic effects indicating intramolecular charge transfer in polar solvents. PY-2TH exhibits unprecedented selectivity for detecting Hg2+ ions in tetrahydrofuran (THF) through turn-OFF fluorescence with 90% decrease in the emission intensity with a limit of detection (LOD) of ∼4.4 ppb. The mechanistic investigation through NMR and optical studies confirm the formation of a 2:1 complex between PY-2TH and Hg2+. Thin films of PY-2TH exhibits the J-aggregate formation in the solid state leading to a shift in the emission towards the near-infrared region. Further, we have demonstrated the applicability of PY-2TH for detection of Hg2+ ions and fluorescence imaging in live Zebrafish larvae and the toxicological effects are explored. Cytotoxic evaluation on Zebrafish larval cells revealed that PY-2TH is found to be non-toxic. Detailed analysis demonstrate the potential of PY-2TH for ultra-sensitive Hg2+ ion detection and removal in aqueous environments, highlighting its applicability for identification of metal contamination in live organisms and environmental toxicity.


Assuntos
Mercúrio , Peixe-Zebra , Animais , Mercúrio/análise , Metais/química , Íons/química , Pirenos/química
8.
Curr Res Microb Sci ; 6: 100216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38274946

RESUMO

Antimicrobial resistance is regarded as a global threat to public health, animals, and the environment, emerging in response to extensive utilization of antimicrobials. The determinants of antimicrobial resistance are transported to susceptible bacterial populations through genetic recombination or through gene transfer, mediated by bacteriophages, plasmids, transposons, and insertion sequences. To determine the penetration of antimicrobial resistance into the bacterial population of the Thiruvandarkoil Lake, a water body located in the rural settings of Puducherry, India, culture-based microbiological and genomic approaches were used. Resistant bacterial isolates obtained from microbiological screening were subjected to whole genome sequencing and the genetic determinants of antimicrobial resistance were identified using in silico genomic tools. Cephalosporin-resistant isolates were found to produce extended spectrum beta lactamases, encoded by blaVEB-6 (in Proteus mirabilis PS01), blaSHV-12 and ompK36 mutation (in Klebsiella quasipneumoniae PS02) and blaSHV-12, blaACT-16, blaCTX-M and blaNDM-1 in (Enterobacter hormaechei PS03). Genes encoding heavy metal resistance, virulence and resistance to detergents were also detected in these resistant isolates. Among ESBL-producing organisms, one mcr-9-positive Enterobacter hormaechei was also identified in this study. To our knowledge, this is the first report of mcr-9 carrying bacterium in the environment in India. This study seeks the immediate attention of policy makers, researchers, government officials and environmental activists in India, to develop surveillance programs to monitor the dissemination of antimicrobial resistance in the environment.

9.
Environ Sci Pollut Res Int ; 31(7): 10379-10394, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37884720

RESUMO

The unprecedented population and anthropogenic activity rise have challenged the future look up for shifts in global temperature and climate patterns. Anthropogenic activities such as land fillings, building dams, wetlands converting to lands, combustion of biomass, deforestation, mining, and the gas and coal industries have directly or indirectly increased catastrophic methane (CH4) emissions at an alarming rate. Methane is 25 times more potent trapping heat when compared to carbon dioxide (CO2) in the atmosphere. A rise in atmospheric methane, on a 20-year time scale, has an impact of 80 times greater than that of CO2. With increased population growth, waste generation is rising and is predicted to reach 6 Mt by 2025. CH4 emitted from landfills is a significant source that accounts for 40% of overall global methane emissions. Various mitigation and emissions reduction strategies could significantly reduce the global CH4 burden at a cost comparable to the parallel and necessary CO2 reduction measures, reversing the CH4 burden to pathways that achieve the goals of the Paris Agreement. CH4 mitigation directly benefits climate change, has collateral impacts on the economy, human health, and agriculture, and considerably supports CO2 mitigation. Utilizing the CO2 from the environment, methanogens produce methane and lower their carbon footprint. NGOs and the general public should act on time to overcome atmospheric methane emissions by utilizing the raw source for producing carbon-neutral fuel. However, more research potential is required for green energy production and to consider investigating the untapped potential of methanogens for dependable energy generation.


Assuntos
Dióxido de Carbono , Mudança Climática , Humanos , Dióxido de Carbono/metabolismo , Biodiversidade , Temperatura , Metano/metabolismo
10.
Chemosphere ; 349: 140867, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048833

RESUMO

This review addresses the impact of various chemical entities like pesticides, antibiotics, nanoparticles and microplastic on gut microbiota of zebrafish. Gut microbiota plays a vital role in metabolic regulation in every organism. As majority of metabolic pathways coordinated by microbiota, small alterations associated with mild to serious outcomes. Because of their unstoppable usage in day-to-day life, the present-day research on gut microbiota is mostly comprising aforementioned chemicals. It is better to understand how gut microbiome is dysbiosed by various environmental factors, to keep our microbiota safe. We tried to delineate the natural flora of zebrafish gut microbiome and the metabolic and other pathways associated and what are the common flora that was dysbiosed during the treatment. Based on the existing literature, we reviewed pesticides like Imazalil, Difenoconazole, Chlorpyrifos, Metamifop, Carbendazim, Imidacloprid, Phoxim, Niclosamide, Dieldrin, and antibiotics like Oxytetracycline, Enrofloxacin, Florfenicol, Sulfamethoxazole, Tetracycline, Streptomycin, Doxycycline, and in the category of nanoparticles, Titanium dioxide nanoparticles (nTiO2), Abalone viscera hydrolysates decorated silver nanoparticles (AVH-AgNPs), Lead-halide perovskite nanoparticles (LHP NPs), Copper nanoparticles (Cu-NPs), silver nanoparticles (Ag-NPs) and microplastic types like polyethylene and polystyrene microplastic. Other studies with miscellaneous chemical entities on zebrafish gut microbiome include Ferulic acid, Polychlorinated biphenyls, Cadmium, Disinfection by-products, Triclosan, microcystin-LR, Fluoride, and Amitriptyline.


Assuntos
Microbioma Gastrointestinal , Nanopartículas Metálicas , Praguicidas , Animais , Plásticos , Peixe-Zebra , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Praguicidas/toxicidade , Microplásticos , Antibacterianos/farmacologia , Prata
11.
Environ Res ; 245: 117913, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38145737

RESUMO

The current work investigates bioremediation (BIO) and electrokinetic (EK) remediation of crude oil hydrocarbons utilizing the biomass-electrokinetic (BIO-EK) approaches. The use of natural surfactants derived from plant biomass may improve remediation capacity by enhancing the solubility of organic pollutants. Sapindus mukorossi, a natural surfactant producer, was extracted from plant biomass in this study. The crude oil biodegradation efficiency was reported to be 98 %. In nature, FTIR confirms that plant biomass is lipopeptide. GCMS revealed that the crude oil (C7 - C23) was efficiently bio-degraded from lower to higher molecular weight. The application of natural surfactants in electokinetic remediation increased the plant biomass degradation of crude oil polluted soil by 98% compared to electrokinetic 55% in 2 days. Natural surfactant improves hydrocarbon solubilization and accelerates hydrocarbon electro migration to the anodic compartment, as confirmed by the presence of greater total organic content than the electrokinetic. This study proves that BIO-EK compared with a natural surfactant derived from plant biomass may be utilized to improve in situ bioremediation of crude oil polluted soils.


Assuntos
Petróleo , Poluentes do Solo , Tensoativos , Petróleo/metabolismo , Solo , Biomassa , Biodegradação Ambiental , Hidrocarbonetos , Poluentes do Solo/análise , Microbiologia do Solo
12.
Arch Microbiol ; 206(1): 33, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133813

RESUMO

The dissemination of antimicrobial-resistant bacteria through environment is a major health concern for public health. Pathogenic bacteria in natural environment can mediate the transfer of antimicrobial-resistant genes via horizontal gene transfer to naturally occurring bacteria in the soil. Bhargavaea beijingensis is a Gram-negative bacterium that is commonly found in soil and water. In recent years, there has been an emergence of antibiotic-resistant strains of environmental bacteria, which pose a significant threat to human health. One mechanism of antibiotic resistance in bacteria is through the acquisition of plasmids, which can carry genes that confer resistance to various antibiotics. In this study, a novel plasmid of repUS12 replicon type was identified in the strain PS04 of B. beijingensis, which carried the ermT and tet(L) genes, encoding resistance to macrolides, lincosamides, and tetracycline. The plasmid was found to be the first of its kind in B. beijingensis and was thought to have been acquired through horizontal gene transfer. The emergence of plasmid-mediated resistance in B. beijingensis highlights the need for continued surveillance and monitoring of antibiotic resistance in environmental bacteria.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Bactérias/genética , Genômica , Solo
13.
Arch Microbiol ; 205(9): 319, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626254

RESUMO

An increase in antibiotic pollution in reef areas will lead to the emergence of antibiotic-resistant bacteria, leading to ecological disturbances in the sensitive coral holobiont. This study provides insights into the genome of antibiotics-resistant Stutzerimonas frequens CAM01, isolated from Favites-associated Symbiodiniaceae of a near-shore polluted reef of Palk Bay, India. The draft genome contains 4.67 Mbp in size with 52 contigs. Further genome analysis revealed the presence of four antibiotic-resistant genes, namely, adeF, rsmA, APH (3")-Ib, and APH (6)-Id that provide resistance by encoding resistance-nodulation-cell division (RND) antibiotic efflux pump and aminoglycoside phosphotransferase. The isolate showed resistance against 73% of the antibiotics tested, concurrent with the predicted AMR genes. Four secondary metabolites, namely Aryl polyene, NRPS-independent-siderophore, terpenes, and ectoine were detected in the isolate, which may play a role in virulence and pathogenicity adaptation in microbes. This study provides key insights into the genome of Stutzerimonas frequens CAM01 and highlights the emergence of antibiotic-resistant bacteria in coral reef ecosystems.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Baías , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Índia
14.
Biofouling ; 39(5): 502-515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37482932

RESUMO

Effective drug candidates to obstruct the emergence of multidrug-resistant pathogens have become a major concern. A potent antimicrobial producer was isolated from a marine sponge designated as MSI38 and was identified as Bacillus subtilis by 16SrDNA sequencing. The active antimicrobial fraction was purified, and the metabolite was identified as n-hexadecanoic acid by spectroscopic analysis. The fish-borne pathogen Pseudomonas aeruginosa FP012 was found to be multidrug-resistant and poses a risk of disease to food handlers and consumers in general. The compound showed a potent bactericidal effect against P. aeruginosa FP012 with a MIC of 31.33 ± 5.67 mg L-1 and MBC of 36.66 ± 5.17 mg L-1. The time-based biofilm inhibitory potential of MSI38 and ciprofloxacin was analyzed by confocal laser scanning microscopy. A synergistic effect of MSI38 and ciprofloxacin on biofilm showed 85% inhibition.

15.
Anal Chim Acta ; 1274: 341526, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37455068

RESUMO

A novel π-electron rich fluoranthene embellished with a phenyl spacer and coupled with terpyridine (TS1) was developed through Diels-Alder reaction. Single crystal X-ray structure evidences the variations in dihedral angles between the fluoranthene and the phenyl unit responsible for development of non-coplanar interactions and stabilized by a wave-like molecular packing in the crystal lattice with weak π-π interaction of 4.125 Å. The peripheral terpyridine of TS1 endows an efficient binding with multiple metal ions by colorimetric and fluorometric methods. TS1 exhibits a ratiometric fluorescence response from sky blue to yellow colour upon the addition of Zn2+ ions with a limit of detection (LOD) of 0.05 ppm. The other metal ions such as Cu2+, Co2+ and Fe2+ demonstrate fluorescence quenching behaviour with LODs of 0.1, 0.3 and 0.7 ppm, respectively. The intramolecular charge transfer (ICT) shows the variation in TS1 emission behaviour upon metal ions interaction and quantitatively discriminates the metal ion concentrations. TS1 conferred a visual colorimetric change from colourless to magenta, enabling naked-eye detection of Fe2+ and showing clear discrimination between Fe2+ and Fe3+ ions for the real-time water samples. Furthermore, we have investigated the effect of TS1 in Zebrafish larvae/embryos and cytotoxicity in human urinary tract transitional cell carcinoma cells (UM-UC-3).


Assuntos
Metais , Peixe-Zebra , Animais , Humanos , Metais/química , Fluorenos/toxicidade , Íons/química , Corantes Fluorescentes/toxicidade , Corantes Fluorescentes/química
16.
Microbiol Mol Biol Rev ; 87(3): e0021222, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37367231

RESUMO

Microbiomes have highly important roles for ecosystem functioning and carry out key functions that support planetary health, including nutrient cycling, climate regulation, and water filtration. Microbiomes are also intimately associated with complex multicellular organisms such as humans, other animals, plants, and insects and perform crucial roles for the health of their hosts. Although we are starting to understand that microbiomes in different systems are interconnected, there is still a poor understanding of microbiome transfer and connectivity. In this review we show how microbiomes are connected within and transferred between different habitats and discuss the functional consequences of these connections. Microbiome transfer occurs between and within abiotic (e.g., air, soil, and water) and biotic environments, and can either be mediated through different vectors (e.g., insects or food) or direct interactions. Such transfer processes may also include the transmission of pathogens or antibiotic resistance genes. However, here, we highlight the fact that microbiome transmission can have positive effects on planetary and human health, where transmitted microorganisms potentially providing novel functions may be important for the adaptation of ecosystems.


Assuntos
Microbiota , Planetas , Animais , Humanos , Microbiologia do Solo , Microbiota/fisiologia , Solo , Água
17.
Int J Biol Macromol ; 242(Pt 2): 124924, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37217051

RESUMO

Microbially influenced corrosion (MIC) of metals is an important industrial problem, causing 300-500 billion dollars of economic loss worldwide each year. It is very challenging to prevent or control the MIC in the marine environment. Eco-friendly coatings embedded with corrosion inhibitors developed from natural products may be a successful approach for MIC prevention or control. As a natural renewable resource, cephalopod chitosan has a number of unique biological properties, such as antibacterial, antifungal and non-toxicity effects, which attract scientific and industrial interests for potential applications. Chitosan is a positively charged molecule, and the negatively charged bacterial cell wall is the target of its antimicrobial action. Chitosan binds to the bacterial cell wall and disrupts the normal functions of the membrane by, for example, facilitating the leakage of intracellular components and impeding the transport of nutrients into the cells. Interestingly, chitosan is an excellent film-forming polymer. Chitosan may be applied as an antimicrobial coating substance for the prevention or control of MIC. Furthermore, the antimicrobial chitosan coating can serve as a basal matrix, in which other antimicrobial or anticorrosive substances like chitosan nanoparticles, chitosan silver nanoparticles, quorum sensing inhibitors (QSI) or the combination of these compounds, can be embedded to achieve synergistic anticorrosive effects. A combination of field and laboratory experiments will be conducted to test this hypothesis for preventing or controlling MIC in the marine environment. Thus, the proposed review will identify new eco-friendly MIC inhibitors and will assay their potential in future applications in the anti-corrosion industry.


Assuntos
Anti-Infecciosos , Quitosana , Nanopartículas Metálicas , Quitosana/farmacologia , Prata/farmacologia , Antibacterianos/farmacologia
18.
J Chromatogr A ; 1695: 463937, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37019063

RESUMO

Antibiotics are life-saving medications for treating bacterial infections; however it has been discovered that resistance developed by bacteria against these incredible agents is the primary contributing factor to rising global mortality rates. The fundamental cause of the emergence of antibiotic resistance in bacteria is the presence of antibiotic residues in various environmental matrices. Although antibiotics are present in diluted form in environmental matrices like water, consistent exposure of bacteria to these minute levels is enough for the resistance to develop. So, identifying these tiny concentrations of numerous antibiotics in various and complicated matrices will be a crucial step in controlling their disposal in those matrices. Solid phase extraction, a popular and customizable extraction technology, was developed according to the aspirations of the researchers. It is a unique alternative technique that could be implemented either alone or in combination with other approaches at different stages because of the multitude of sorbent varieties and techniques. Initially, sorbents are utilized for extraction in their natural state. The basic sorbent has been modified over time with nanoparticles and multilayer sorbents, which have indeed helped to accomplish the desired extraction efficiencies. Among the current traditional extraction techniques such as liquid-liquid extraction, protein precipitation, and salting out techniques, solid-phase extractions (SPE) with nanosorbents are most productive because, they can be automated, selective, and can be integrated with other extraction techniques. This review aims to provide a broad overview of advancements and developments in sorbents with a specific emphasis on the applications of SPE techniques used for antibiotic detection and quantification in various matrices in the last two decades.


Assuntos
Antibacterianos , Extração em Fase Sólida , Antibacterianos/análise , Extração em Fase Sólida/métodos , Extração Líquido-Líquido , Água
19.
J Sci Food Agric ; 103(9): 4685-4691, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36922905

RESUMO

BACKGROUND: Gluten-free food products are in demand due to the gluten sensitivity of individuals around the globe. Lipopeptide biosurfactants are widely used in food formulations for wetting, foaming, emulsion stabilization, anti-adhesive and anti-microbial properties. Lipopeptide biosurfactants can be used for gluten utilization and the formulation of food products. RESULTS: The strain Bacillus licheniformis MS48 was isolated from the marine sponge associated bacteria and found to be the ideal biosurfactant producer with an emulsification activity of 70%. Biosurfactant production was optimized using lactose, yeast extract, and sodium chloride (NaCl). The 1,1-diphenyl- 2-picryl hydrazyl (DPPH) radical scavenging activity was found to increase with an increase in the concentration of biosurfactant. The conformation changes in the gluten  due to the treatment of lipopeptide biosurfactant was identified by thiol quantification and scanning electron microscopy. With the addition of lipopeptide MS48 to cookie dough, cookies with softer and smooth textures were developed. The conformation changes in the gluten   in the lipopeptide incorporated  cookie dough was visualized by scanning electron microscopy. The lipopeptide biosurfactant incorporation in cookie dough causes appropriate changes in the structural network of gluten. The lipopeptide-incorporated cookies had improved the spread factor and texture. CONCLUSION: Lipopeptide biosurfactant with effective radical scavenging activity aided in the utilization of gluten. Incorporating lipopeptide in cookie dough assisted in the production of cookies with improved textural and sensory properties. This study is a novel approach to the application of lipopeptide biosurfactant in gluten utilization for the development of cookies. © 2023 Society of Chemical Industry.


Assuntos
Bacillus licheniformis , Triticum , Triticum/química , Tensoativos/química , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Alimentos , Bacillus licheniformis/metabolismo
20.
Drug Dev Res ; 84(3): 470-483, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36744647

RESUMO

In the quest to develop potent inhibitors for Mycobacterium tuberculosis, novel isoniazid-based pyridinium salts were designed, synthesized, and tested for their antimycobacterial activities against the H37 Rv strain of Mycobacterium tuberculosis using rifampicin as a standard. The pyridinium salts 4k, 4l, and 7d showed exceptional antimycobacterial activities with MIC90 at 1 µg/mL. The in vitro cytotoxicity and pharmacokinetics profiles of these compounds were established for the identification of a lead molecule using in vivo efficacy proof-of-concept studies and found that the lead compound 4k possesses LC50 value at 25 µg/mL. The in vitro antimycobacterial activity results were further supported by in silico studies with good binding affinities ranging from -9.8 to -11.6 kcal/mol for 4k, 4l, and 7d with the target oxidoreductase DprE1 enzyme. These results demonstrate that pyridinium salts derived from isoniazid can be a potentially promising pharmacophore for the development of novel antitubercular candidates.


Assuntos
Isoniazida , Mycobacterium tuberculosis , Isoniazida/farmacologia , Simulação de Acoplamento Molecular , Sais , Antituberculosos/química , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...