Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 37(5): e9459, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36539963

RESUMO

RATIONALE: The SrO-Al2 O3 system holds promise as a base for a wide spectrum of advanced materials, which may be synthesized or applied at high temperatures. Therefore, studying vaporization and high-temperature thermodynamic properties of this system is of great practical importance. METHODS: Samples of the SrO-Al2 O3 system were obtained by solid-state synthesis and identified by X-ray fluorescence analysis, X-ray phase analysis, scanning electron microscopy, electron probe microanalysis, simultaneous thermal analysis, and thermogravimetric analysis. The thermodynamic properties of the SrO-Al2 O3 system were studied by the Knudsen effusion mass spectrometric (KEMS) method and were fitted by the Redlich-Kister and Wilson polynomials. The thermodynamic values obtained were also optimized within the generalized lattice theory of associated solutions (GLTAS). RESULTS: The vapor composition, temperature, and concentration dependences of the partial vapor pressures over the samples under study as well as the SrO activities in melts of the SrO-Al2 O3 system were determined by the KEMS method. Usage of the Redlich-Kister and Wilson polynomials allowed calculation of the excess Gibbs energies, enthalpies of mixing, and excess entropies in the concentration range 0-33 mol% of SrO at temperatures of 2450 and 2550 K. CONCLUSIONS: Significant negative deviations from the ideality were observed in the melts of the SrO-Al2 O3 system at 2450, 2550, and 2650 K. The Wilson polynomial was found to be the optimal approach to describe the thermodynamic properties in the system studied. Optimization of the experimental data using the GLTAS approach allowed the characteristic features of the thermodynamic description of the SrO-Al2 O3 system to be elucidated and explained.

2.
ACS Omega ; 7(29): 24973-24981, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910105

RESUMO

This article presents new possibilities of using thin films of lanthanide stearates as sorbent materials. Modification of the Q-sense device resonator with monolayers of lanthanide stearates by the Langmuir-Schaeffer method made it possible to study the process of insulin protein adsorption on the surface of new thin-film sorbents. The resulting films were also characterized by compression isotherms, chemical analysis, scanning electron microscopy, and mass spectrometry. The transition of stearic acid to salt was recorded by IR spectroscopy. Using the LDI MS method, the main component of thin films, lanthanide distearate, was established. The presence of Eu2+ in thin films was revealed. In the case of europium stearate, the maximum value of insulin adsorption was obtained, -1.67·10-10 mole/cm2. The findings suggest the possibility of using thin films of lanthanide stearates as a sorption material for the proteomics determination of the quantitative protein content in complex fluid systems by specific adsorption on modified surfaces and isolation of such proteins from complex mixtures.

3.
J Phys Chem B ; 124(18): 3724-3733, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32283018

RESUMO

The ultrafast photochemistry of the [Cr(NCS)6]3- complex upon excitation to the 4T2 ligand-field (LF) state was studied in dimethyl sulfoxide (DMSO) and N,N-dimethylformamide (DMF) in a wide temporal range (100 fs to 9 ms) by a combination of femtosecond and nanosecond transient absorption spectroscopy techniques and supported by quantum-chemical DFT/TD-DFT calculations. The initially excited 4T2 state undergoes intersystem crossing to the vibrationally hot 2E state with time constants of 1.1 ± 0.2 and 1.8 ± 0.1 ps in DMSO and DMF, respectively. Vibrational relaxation occurs in the same time scale and takes 1-5 ps. A major part of the [Cr(NCS)6]3- complex in the 2E state undergoes intersystem crossing to the ground state with time constants of 65 ± 5 and 85 ± 5 ns in DMSO and DMF, respectively. A minor part of electronically excited [Cr(NCS)6]3- undergoes irreversible photochemical decomposition. In DMSO, the photolysis of the [Cr(NCS)6]3- complex results in single or double isothiocyanate ion release followed by the coordination of the solvent molecules with a time constant of 1 ± 0.2 ms.


Assuntos
Dimetil Sulfóxido , Dimetilformamida , Eletrônica , Ligantes , Fotoquímica
4.
Anal Chem ; 91(2): 1636-1643, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30532949

RESUMO

Metabolic fingerprinting is a powerful analytical technique, giving access to high-throughput identification and relative quantification of multiple metabolites. Because of short analysis times, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is the preferred instrumental platform for fingerprinting, although its power in analysis of free fatty acids (FFAs) is limited. However, these metabolites are the biomarkers of human pathologies and indicators of food quality. Hence, a high-throughput method for their fingerprinting is required. Therefore, here we propose a MALDI-TOF-MS method for identification and relative quantification of FFAs in biological samples of different origins. Our approach relies on formation of monomolecular Langmuir films (LFs) at the interphase of aqueous barium acetate solution, supplemented with low amounts of 2,5-dihydroxybenzoic acid, and hexane extracts of biological samples. This resulted in detection limits of 10-13-10-14 mol and overall method linear dynamic range of at least 4 orders of magnitude with accuracy and precision within 2 and 17%, respectively. The method precision was verified with eight sample series of different taxonomies, which indicates a universal applicability of our approach. Thereby, 31 and 22 FFA signals were annotated by exact mass and identified by tandem MS, respectively. Among 20 FFAs identified in Fucus algae, 14 could be confirmed by gas chromatography-mass spectrometry.


Assuntos
Ácidos Graxos não Esterificados/análise , Ácidos Graxos não Esterificados/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Limite de Detecção , Padrões de Referência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/normas
5.
J Chromatogr A ; 1513: 140-148, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28750732

RESUMO

In this research, a novel IMAC sorbent with high specificity for chlorine-containing compounds was developed. Ni-functionalized monodisperse spherical mesoporous silica particles of 500±25nm diameter were synthesized and their metal affinity properties were studied with the use of diclofenac as the model substance. The particles were aggregatively stable in the pH range of 3-12. The sorbent demonstrated a high adsorption capacity (0.60±0.06µg of DCF per 1mg of the sorbent) and high adsorption/desorption rate (20 and 5min was enough for the sorbent saturation and desorption of DCF, correspondingly). A mixture of eluents with addition of PFOS providing the almost complete recovery (98%) of diclofenac was first proposed. The monodispersity and the high sedimentation and aggregative stability of the particles provide the formation of a stable hydrosol even under ultrasound treatment which makes the mSiO2/Ni particles suitable for batch chromatography.


Assuntos
Cromatografia de Afinidade/métodos , Metais/química , Níquel/química , Tamanho da Partícula , Dióxido de Silício/química , Adsorção , Ácido Benzoico/análise , Ciprofloxacina/análise , Diclofenaco/análise , Cinética , Microscopia Eletrônica de Transmissão , Porosidade , Espectrometria por Raios X , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...