Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 302: 120419, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604081

RESUMO

In this work, an innovative PLA/CNF nanocomposite foam with a bimodal cell structure is prepared by a simple one-step depressurization foaming process using only supercritical carbon dioxide (ScCO2) as the foaming agent. Only at a specific foaming temperature, PLA/CNF nanocomposites foam with a bimodal cell structure could be obtained. According to the different crystallization kinetics and nucleation efficiency of samples, it was inferred that the crystallization rate and phase interface would affect the cell structure. The prepared PLA/CNF nanocomposite foam with a bimodal cell structure had an expansion ratio as high as 20 times and thermal conductivity of 0.041 w m-1 k-1, which exhibited low density and excellent thermal-insulation property. Meanwhile, the PLA/CNF nanocomposite foam exhibited excellent compression performance due to the presence of CNFs, which showed promising application in packaging and construction materials.


Assuntos
Celulose , Nanocompostos , Celulose/química , Poliésteres/química , Pressão , Ácido Láctico , Nanocompostos/química
2.
Carbohydr Polym ; 286: 119320, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337523

RESUMO

The incorporation of micro-/nano-particles is one of the most efficient approaches to reinforce poly (lactic acid) (PLA). However, introducing the inorganic particles which can compromise the green nature of PLA. Herein, we proposed a green strategy to add biodegradable cellulose nanofibers (CNFs) into the PLA matrix for eliminating its low melt strength and slow crystallization rate. Well-dispersed hydrophobic-modified CNFs in the PLA matrix were obtained through the combination of acetylation surface modification and the melt-compounding technology. The PLA/CNF composites notably improved crystallization properties and melt elasticity, compared with the neat PLA. Additionally, the foaming behavior of PLA was dramatically enhanced by introducing 2 wt% modified CNFs. At an ultralow pressure of 1.5 MPa, the prepared PLA/CNF nanocomposite foams exhibited the highest expansion ratio approximately 20.4. These results demonstrated that CNFs were extraordinarily helpful in enhancing the foamability of PLA, which are expected to be applied as a sustainable packaging material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...