Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 31(45): 455706, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32731206

RESUMO

Silica glass samples were implanted with 50-380 keV Ag ions. After ion implantation, some samples were subsequently irradiated with 16 MeV Au ions. The effects of the implantation and the subsequent Au ion irradiation on the optical absorption spectra and morphologies of the Ag nanoparticles produced in the samples were studied by using an ultraviolet-visible scanning spectrophotometer and a transmission electron microscope, respectively. For the samples implanted with 200 keV or 380 keV Ag ions to high fluence, optical absorption peaks appeared around 600 nm, as well as the well-known surface plasmon resonance peaks around 400 nm, and Ag spherical nanoparticles with a high spatial density were observed. The absorption peaks around 600 nm are explained as being due to interactions between the Ag nanoparticles (inter-particle interaction). Under the subsequent irradiation with 16 MeV Au ions, the optical absorption around 400 and 600 nm showed a blue shift and the peak intensity markedly decreased. Transmission electron microscopy observation revealed an elongation of the Ag nanoparticles along the direction of the 16 MeV Au irradiation, and a resulting enlargement of the distances between the nanoparticles. The change in the peak wavelength and peak intensity of the optical absorption by the 16 MeV Au irradiation can, therefore, be explained as originating from a decrease in inter-particle interaction.

2.
Ultrason Sonochem ; 69: 105229, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32623344

RESUMO

The sonochemical formation of Au seeds and their autocatalytic growth to Au nanorods were investigated in a one-pot as a function of concentration of HAuCl4, AgNO3, and ascorbic acid (AA). The effects of ultrasonic power and irradiation time were also investigated. In addition, the formation rate of Au nanorods was analyzed by monitoring the extinction at 400 nm by UV-Vis spectroscopy and compared with the growth behavior of Au seeds to nanorods. Most of the reaction conditions affected the yield, size, and shape of Au nanorods formed. It was confirmed that the concentration balance between HAuCl4 and AA was important to proceed the formation of Au seeds and nanorods effectively. The formation rate became faster with increasing AA concentration and dog-bone shaped nanorods were formed at high AA concentration. It was also confirmed a unique phenomenon that the shape of Au nanorods changed even after the completion of the reduction of Au(I) in the case of short-time ultrasonic irradiation for Au seed formation.

3.
Materials (Basel) ; 10(4)2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28772774

RESUMO

The dependence of the grain boundary character distribution for a Cu-4 at. % Ti polycrystal alloy (average grain size: 100 µm) on the nucleation of cellular discontinuous precipitates was systematically investigated. In an alloy over-aged at 723 K, cellular discontinuous precipitates consisted of a terminal Cu solid solution and a stable ß-Cu4Ti lamellae nucleated at grain boundaries. Electron backscatter diffraction analysis revealed that the discontinuous precipitation reaction preferentially occurred at random grain boundaries with a Σ value of more than 21 according to the coincidence site lattice theory. On the other hand, few cellular discontinuous precipitates nucleated at low-angle and low-Σ boundaries, particularly twin (Σ 3) boundaries. These findings suggest that the nucleation of discontinuous precipitates is closely correlated with grain boundary character and structure, and hence energy and/or diffusibility. It should therefore be possible to suppress the discontinuous precipitation reaction through control of the alloy's grain boundary energy, by means of texture control and third elemental addition.

4.
Materials (Basel) ; 8(4): 1924-1933, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28788039

RESUMO

We have studied three-dimensional (3D) configurations of dislocations in the ß phase of a Ti-35mass%Nb alloy by means of single-axis tilt tomography using bright-field scanning transmission electron microscopy (BF-STEM). To visualize dislocations, the hh0 systematic reflections were excited throughout tilt-series acquisition with the maximum tilt angle of 70°. Dislocations in the ß grains were clearly reconstructed by the weighted back-projection algorithm. The slip planes of the dislocations were deduced by rotating the reconstructed volumes with the aid of selected area electron diffraction patterns. It was found that BF-STEM images with relatively low contrasts, taken along low-order zone axes, are capable to reproduce and preserve the quality of reconstructed image of dislocations. We also found that tilt angles as low as 40° are practically acceptable to visualize 3D configurations of dislocations, while there exists limitation in resolution due to the existence of a large missing wedge.

5.
Mater Sci Eng C Mater Biol Appl ; 33(3): 1629-35, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23827617

RESUMO

The mechanical properties and microstructures of ß Ti-25%Nb-11%Sn ternary alloy rods were investigated for biomedical applications as a function of heat treatment temperature after swaging by an 86% reduction in cross-section area. An as-swaged rod consisting of a ß (bcc) single phase shows a low Young's modulus of 53 GPa, which is interpreted in terms of both the metastable composition of the ß alloy undergoing neither an athermal ω transformation nor a deformation-induced ω transformation and <110>texture development during swaging. Heat treatment at 673 K (400 °C) for 2h leads to a high strength of approximately 1330 MPa and a high spring-back ratio of yield stress to Young's modulus over 15×10(-3), with acceptable elongation. This high strength is attributable to needle-like α precipitates, which are identified by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and high-resolution electron microscopy (HREM).


Assuntos
Ligas/química , Tecnologia Biomédica/métodos , Fenômenos Mecânicos , Módulo de Elasticidade , Análise de Fourier , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Estresse Mecânico , Temperatura , Resistência à Tração , Difração de Raios X
6.
Ultramicroscopy ; 109(5): 593-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19243888

RESUMO

Copper alloys with titanium additions between 1 and 6at% Ti emerge currently as attractive conductive materials for electrical and electronic commercial products, since they exhibit superior mechanical and electrical properties. However, their electrical conductivity is reduced owing to the residual amount of Ti solutes in the Cu solid solution (Cu(ss)) phase. Since Cu shows only poor reactivity with hydrogen (H), while Ti exhibits high affinity to it, we were inspired by the idea that hydrogenation of Cu-Ti alloys would influence their microstructure, resulting in a significant change of their properties. In this contribution, the influence of aging under a deuterium (D(2)) atmosphere of Cu-1at% Ti alloys on their microstructure is investigated to explore the effects on the electrical conductivity. The specimens were investigated by means of transmission electron microscopy (TEM), field ion microscopy (FIM), computer-aided field ion image tomography (cFIIT), and atom probe tomography (APT). At an early aging stage at 623K in a D(2) atmosphere of 0.08MPa, ellipsoidal alpha-Cu(4)Ti precipitates are formed in the alloy, and during subsequent aging, delta-TiD(2) is competitively nucleated instead of growth of alpha-Cu(4)Ti particles. The co-precipitation of alpha-Cu(4)Ti and delta-TiD(2) efficiently reduces the Ti concentration of Cu(ss) matrix, particularly in the later aging stages in comparison to the aging in vacuum conditions. The electrical conductivity of the alloy aged in the D(2) atmosphere increases steeply up to 48% International Annealed Copper Standard (IACS) after 1030h, while it saturates to approximately 20% IACS in the alloy aged in vacuum. The outstanding increase of electrical conductivity during aging in D(2) atmosphere can be basically explained by the reduction of Ti solute concentration in Cu(ss) matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...