Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(18)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38738615

RESUMO

Interaction between a fixed point electric charge Q and a freely rotating point electric dipole with the magnitude P pinned near a plane interface between two dispersionless insulators with different dielectric permittivities ɛ1 and ɛ2 has been considered. It was shown that, as a result of this interaction and the interaction of the dipole with the polarization charges induced at the interface by the charge Q and the dipole itself, there arise regions where the dipole can possess either one or two equilibrium orientations. The spatial distributions of the electrostatic dipole energy Wtotal under the combined action of the charge Q and the induced interface polarization charges, as well as the equilibrium dipole orientations (orientation maps), the boundaries between the regions with different numbers of dipole orientations, and their evolution with the variation of problem parameters (the charge and dipole magnitudes, the mismatch between ɛ1 and ɛ2, and the charge-interface distance) were calculated. It was shown that there can emerge local minima of Wtotal, which may play the role of traps for dipoles (in particular, excitons in layered structures), and the corresponding requirements for the problem parameters were found. Most results were obtained in analytical form. The model can be applied to various physical systems, for instance, polar molecules, excitons, and trions in layered structures.

2.
Nanomaterials (Basel) ; 13(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836356

RESUMO

Ion-flow-stimulated roughening transition is a phenomenon that may prove useful in the hierarchical structuring of nanostructures. In this work, we have investigated theoretically and experimentally the surface texturing of single-crystal and multi-crystalline silicon wafers irradiated using ion-beam flows. In contrast to previous studies, ions had relatively low energies, whereas flow densities were high enough to induce a quasi-liquid state in the upper silicon layers. The resulting surface modifications reduced the wafer light reflectance to values characteristic of black silicon, widely used in solar energetics. Features of nanostructures on different faces of silicon single crystals were studied numerically based on the mesoscopic Monte Carlo model. We established that the formation of nano-pyramids, ridges, and twisting dune-like structures is due to the stimulated roughening transition effect. The aforementioned variety of modified surface morphologies arises due to the fact that the effects of stimulated surface diffusion of atoms and re-deposition of free atoms on the wafer surface from the near-surface region are manifested to different degrees on different Si faces. It is these two factors that determine the selection of the allowable "trajectories" (evolution paths) of the thermodynamic system along which its Helmholtz free energy, F, decreases, concomitant with an increase in the surface area of the wafer and the corresponding changes in its internal energy, U (dU>0), and entropy, S (dS>0), so that dF=dU - TdS<0, where T is the absolute temperature. The basic theoretical concepts developed were confirmed in experimental studies, the results of which showed that our method could produce, abundantly, black silicon wafers in an environmentally friendly manner compared to traditional chemical etching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...