Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
Cell Rep ; 43(4): 113972, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38517892

RESUMO

Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator that mediates cellular adaptation to decreased oxygen availability. HIF-1 recruits chromatin-modifying enzymes leading to changes in histone acetylation, citrullination, and methylation at target genes. Here, we demonstrate that hypoxia-inducible gene expression in estrogen receptor (ER)-positive MCF7 and ER-negative SUM159 human breast cancer cells requires the histone H2A/H2B chaperone facilitates chromatin transcription (FACT) and the H2B ubiquitin ligase RING finger protein 20/40 (RNF20/40). Knockdown of FACT or RNF20/40 expression leads to decreased transcription initiation and elongation at HIF-1 target genes. Mechanistically, FACT and RNF20/40 are recruited to hypoxia response elements (HREs) by HIF-1 and stabilize binding of HIF-1 (and each other) at HREs. Hypoxia induces the monoubiquitination of histone H2B at lysine 120 at HIF-1 target genes in an HIF-1-dependent manner. Together, these findings delineate a cooperative molecular mechanism by which FACT and RNF20/40 stabilize multiprotein complex formation at HREs and mediate histone ubiquitination to facilitate HIF-1 transcriptional activity.


Assuntos
Proteínas de Ligação a DNA , Fator 1 Induzível por Hipóxia , Ubiquitina-Proteína Ligases , Humanos , Hipóxia Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Células MCF-7 , Ligação Proteica , Elementos de Resposta , Fatores de Transcrição/metabolismo , Ativação Transcricional , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
4.
Semin Cancer Biol ; 96: 5-10, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37717718

RESUMO

Cancers express a large battery of genes by which they establish an immunosuppressive tumor microenvironment. Many of these genes are induced by intratumoral hypoxia through transcriptional activation mediated by hypoxia-inducible factors HIF-1 and HIF-2. This review summarizes several recent reports describing hypoxia-induced mechanisms of immune evasion in sarcoma and breast, colorectal, hepatocellular, prostate and uterine cancer. These studies point to several novel therapeutic approaches to improve anti-tumor immunity and increase responses to immunotherapy.


Assuntos
Neoplasias , Masculino , Humanos , Neoplasias/genética , Neoplasias/terapia , Hipóxia/genética , Microambiente Tumoral/genética
5.
Stem Cells Transl Med ; 12(12): 783-790, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37768037

RESUMO

Many advanced human cancers contain regions of intratumoral hypoxia, with O2 gradients extending to anoxia. Hypoxia-inducible factors (HIFs) are activated in hypoxic cancer cells and drive metabolic reprogramming, vascularization, invasion, and metastasis. Hypoxia induces breast cancer stem cell (BCSC) specification by inducing the expression and/or activity of the pluripotency factors KLF4, NANOG, OCT4, and SOX2. Recent studies have identified HIF-1-dependent expression of PLXNB3, NARF, and TERT in hypoxic breast cancer cells. PLXNB3 binds to and activates the MET receptor tyrosine kinase, leading to activation of the SRC non-receptor tyrosine kinase and subsequently focal adhesion kinase, which promotes cancer cell migration and invasion. PLXNB3-MET-SRC signaling also activates STAT3, a transcription factor that mediates increased NANOG gene expression. Hypoxia-induced NARF binds to OCT4 and serves as a coactivator by stabilizing OCT4 binding to the KLF4, NANOG, and SOX2 genes and by stabilizing the interaction of OCT4 with KDM6A, a histone demethylase that erases repressive trimethylation of histone H3 at lysine 27, thereby increasing KLF4, NANOG, and SOX2 gene expression. In addition to increasing pluripotency factor expression by these mechanisms, HIF-1 directly activates expression of the TERT gene encoding telomerase, the enzyme required for maintenance of telomeres, which is required for the unlimited self-renewal of BCSCs. HIF-1 binds to the TERT gene and recruits NANOG, which serves as a coactivator by promoting the subsequent recruitment of USP9X, a deubiquitinase that inhibits HIF-1α degradation, and p300, a histone acetyltransferase that mediates acetylation of H3K27, which is required for transcriptional activation.


Assuntos
Neoplasias da Mama , Fator 1 Induzível por Hipóxia , Humanos , Feminino , Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Hipóxia/metabolismo , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Ubiquitina Tiolesterase/metabolismo
9.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37227777

RESUMO

Many patients with diabetic eye disease respond inadequately to anti-VEGF therapies, implicating additional vasoactive mediators in its pathogenesis. We demonstrate that levels of angiogenic proteins regulated by HIF-1 and -2 remain elevated in the eyes of people with diabetes despite treatment with anti-VEGF therapy. Conversely, by inhibiting HIFs, we normalized the expression of multiple vasoactive mediators in mouse models of diabetic eye disease. Accumulation of HIFs and HIF-regulated vasoactive mediators in hyperglycemic animals was observed in the absence of tissue hypoxia, suggesting that targeting HIFs may be an effective early treatment for diabetic retinopathy. However, while the HIF inhibitor acriflavine prevented retinal vascular hyperpermeability in diabetic mice for several months following a single intraocular injection, accumulation of acriflavine in the retina resulted in retinal toxicity over time, raising concerns for its use in patients. Conversely, 32-134D, a recently developed HIF inhibitor structurally unrelated to acriflavine, was not toxic to the retina, yet effectively inhibited HIF accumulation and normalized HIF-regulated gene expression in mice and in human retinal organoids. Intraocular administration of 32-134D prevented retinal neovascularization and vascular hyperpermeability in mice. These results provide the foundation for clinical studies assessing 32-134D for the treatment of patients with diabetic eye disease.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Neovascularização Retiniana , Humanos , Camundongos , Animais , Acriflavina/metabolismo , Acriflavina/farmacologia , Acriflavina/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , Neovascularização Retiniana/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
10.
Cell Rep ; 42(3): 112164, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36857181

RESUMO

Intratumoral hypoxia is a microenvironmental feature that promotes breast cancer progression and is associated with cancer mortality. Plexin B3 (PLXNB3) is highly expressed in estrogen receptor-negative breast cancer, but the underlying mechanisms and consequences have not been thoroughly investigated. Here, we report that PLXNB3 expression is increased in response to hypoxia and that PLXNB3 is a direct target gene of hypoxia-inducible factor 1 (HIF-1) in human breast cancer cells. PLXNB3 expression is correlated with HIF-1α immunohistochemistry, breast cancer grade and stage, and patient mortality. Mechanistically, PLXNB3 is required for hypoxia-induced MET/SRC/focal adhesion kinase (FAK) and MET/SRC/STAT3/NANOG signaling as well as hypoxia-induced breast cancer cell migration, invasion, and cancer stem cell specification. PLXNB3 knockdown impairs tumor formation and lung metastasis in orthotopic breast cancer mouse models.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Hipóxia Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/metabolismo
11.
Annu Rev Med ; 74: 307-319, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35773226

RESUMO

Red blood cells transport O2 from the lungs to body tissues. Hypoxia stimulates kidney cells to secrete erythropoietin (EPO), which increases red cell mass. Hypoxia-inducible factors (HIFs) mediate EPO gene transcriptional activation. HIF-α subunits are subject to O2-dependent prolyl hydroxylation and then bound by the von Hippel-Lindau protein (VHL), which triggers their ubiquitination and proteasomal degradation. Mutations in the genes encoding EPO, EPO receptor, HIF-2α, prolyl hydroxylase domain protein 2 (PHD2), or VHL cause familial erythrocytosis. In addition to O2, α-ketoglutarate is a substrate for PHD2, and analogs of α-ketoglutarate inhibit hydroxylase activity. In phase III clinical trials evaluating the treatment of anemia in chronic kidney disease, HIF prolyl hydroxylase inhibitors were as efficacious as darbepoetin alfa in stimulating erythropoiesis. However, safety concerns have arisen that are focused on thromboembolism, which is also a phenotypic manifestation of VHL or HIF-2α mutation, suggesting that these events are on-target effects of HIF prolyl hydroxylase inhibitors.


Assuntos
Eritropoese , Inibidores de Prolil-Hidrolase , Humanos , Eritropoese/genética , Inibidores de Prolil-Hidrolase/farmacologia , Inibidores de Prolil-Hidrolase/uso terapêutico , Ácidos Cetoglutáricos , Hipóxia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
12.
Cardiovasc Res ; 119(2): 371-380, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35687650

RESUMO

Hypoxia-inducible factors (HIF)-1 and HIF-2 are master regulators of oxygen homeostasis that regulate the expression of thousands of genes in order to match O2 supply and demand. A large body of experimental data links HIF activity to protection against multiple disorders affecting the cardiovascular system: ischemic cardiovascular disease (including coronary artery disease and peripheral artery disease), through collateral blood vessel formation and preconditioning phenomena; emphysema; lymphedema; and lung transplant rejection. In these disorders, strategies to increase the expression of one or both HIFs may be of therapeutic utility. Conversely, extensive data link HIFs to the pathogenesis of pulmonary arterial hypertension and drugs that inhibit one or both HIFs may be useful in treating this disease.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Doença da Artéria Coronariana , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/prevenção & controle , Hipóxia/metabolismo , Pulmão/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia
13.
EMBO Rep ; 24(1): e54042, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36341521

RESUMO

Aberrant activation of the hypoxia-inducible transcription factor HIF-1 and dysfunction of the tumor suppressor p53 have been reported to induce malignant phenotypes and therapy resistance of cancers. However, their mechanistic and functional relationship remains largely unknown. Here, we reveal a mechanism by which p53 deficiency triggers the activation of HIF-1-dependent hypoxia signaling and identify zinc finger and BTB domain-containing protein 2 (ZBTB2) as an important mediator. ZBTB2 forms homodimers via its N-terminus region and increases the transactivation activity of HIF-1 only when functional p53 is absent. The ZBTB2 homodimer facilitates invasion, distant metastasis, and growth of p53-deficient, but not p53-proficient, cancers. The intratumoral expression levels of ZBTB2 are associated with poor prognosis in lung cancer patients. ZBTB2 N-terminus-mimetic polypeptides competitively inhibit ZBTB2 homodimerization and significantly suppress the ZBTB2-HIF-1 axis, leading to antitumor effects. Our data reveal an important link between aberrant activation of hypoxia signaling and loss of a tumor suppressor and provide a rationale for targeting a key mediator, ZBTB2, to suppress cancer aggressiveness.


Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Hipóxia/genética , Ligação Proteica , Transdução de Sinais , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia Celular/genética , Proteínas Repressoras/genética
14.
PLoS Genet ; 18(12): e1010504, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36480544

RESUMO

Ollier disease (OD) and Maffucci Syndrome (MS) are rare disorders characterized by multiple enchondromas, commonly causing bone deformities, limb length discrepancies, and pathological fractures. MS is distinguished from OD by the development of vascular anomalies. Both disorders are cancer predisposition syndromes with malignancies developing in ~50% of the individuals with OD or MS. Somatic gain-of-function variants in IDH1 and IDH2 have been described in the enchondromas, vascular anomalies and chondrosarcomas of approximately 80% of the individuals with OD and MS. To date, however, no investigation of germline causative variants for these diseases has been comprehensively performed. To search for germline causative variants, we performed whole exome sequencing or whole genome sequencing of blood or saliva DNA in 94 unrelated probands (68 trios). We found that 7 had rare germline missense variants in HIF1A, 6 had rare germline missense variants in VHL, and 3 had IDH1 variants including 2 with mosaic IDH1-p.Arg132His variant. A burden analysis using 94 probands assigned as cases and 2,054 unrelated individuals presenting no OD- or MS-related features as controls, found that variants in HIF1A, VHL, and IDH1 were all significantly enriched in cases compared to controls. To further investigate the role of HIF-1 pathway in the pathogenesis of OD and MS, we performed RNA sequencing of fibroblasts from 4 probands with OD or MS at normoxia and at hypoxia. When cultured in hypoxic conditions, both proband and control cells showed altered expression of a subset of HIF-1 regulated genes. However, the set of differentially expressed genes in proband fibroblasts included a significantly reduced number of HIF-1 regulated genes compared to controls. Our findings suggest that germline or early post-zygotic variants identified in HIF1A, VHL, and IDH1 in probands with OD and MS underlie the development of the phenotypic abnormalities in a subset of individuals with OD and MS, but extensive functional studies are needed to further confirm it.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Encondromatose , Doenças Vasculares , Humanos , Encondromatose/complicações , Encondromatose/genética , Encondromatose/patologia , Condrossarcoma/patologia , Análise de Sequência de DNA , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
15.
Sci Adv ; 8(49): eabo5000, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36490339

RESUMO

Hypoxia is a key characteristic of the breast cancer microenvironment that promotes expression of the transcriptional activator hypoxia-inducible factor 1 (HIF-1) and is associated with poor patient outcome. HIF-1 increases the expression or activity of stem cell pluripotency factors, which control breast cancer stem cell (BCSC) specification and are required for cancer metastasis. Here, we identify nuclear prelamin A recognition factor (NARF) as a hypoxia-inducible, HIF-1 target gene in human breast cancer cells. NARF functions as an essential coactivator by recruiting the histone demethylase KDM6A to OCT4 bound to genes encoding the pluripotency factors NANOG, KLF4, and SOX2, leading to demethylation of histone H3 trimethylated at lysine-27 (H3K27me3), thereby increasing the expression of NANOG, KLF4, and SOX2, which, together with OCT4, mediate BCSC specification. Knockdown of NARF significantly decreased the BCSC population in vitro and markedly impaired tumor initiation capacity and lung metastasis in orthotopic mouse models.


Assuntos
Neoplasias da Mama , Fator 1 Induzível por Hipóxia , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Histonas/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo
16.
J Clin Invest ; 132(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642641

RESUMO

Hypoxia-inducible factors (HIFs) are master regulators of oxygen homeostasis that match O2 supply and demand for each of the 50 trillion cells in the adult human body. Cancer cells co-opt this homeostatic system to drive cancer progression. HIFs activate the transcription of thousands of genes that mediate angiogenesis, cancer stem cell specification, cell motility, epithelial-mesenchymal transition, extracellular matrix remodeling, glucose and lipid metabolism, immune evasion, invasion, and metastasis. In this Review, the mechanisms and consequences of HIF activation in cancer cells are presented. The current status and future prospects of small-molecule HIF inhibitors for use as cancer therapeutics are discussed.


Assuntos
Neoplasias , Transição Epitelial-Mesenquimal , Humanos , Hipóxia/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/metabolismo
17.
JCI Insight ; 7(13)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35653189

RESUMO

Most patients with neovascular age-related macular degeneration (nvAMD), the leading cause of severe vision loss in elderly US citizens, respond inadequately to current therapies targeting a single angiogenic mediator, vascular endothelial growth factor (VEGF). Here, we report that aqueous fluid levels of a second vasoactive mediator, angiopoietin-like 4 (ANGPTL4), can help predict the response of patients with nvAMD to anti-VEGF therapies. ANGPTL4 expression was higher in patients who required monthly treatment with anti-VEGF therapies compared with patients who could be effectively treated with less-frequent injections. We further demonstrate that ANGPTL4 acts synergistically with VEGF to promote the growth and leakage of choroidal neovascular (CNV) lesions in mice. Targeting ANGPTL4 expression was as effective as targeting VEGF expression for treating CNV in mice, while simultaneously targeting both was more effective than targeting either factor alone. To help translate these findings to patients, we used a soluble receptor that binds to both VEGF and ANGPTL4 and effectively inhibited the development of CNV lesions in mice. Our findings provide an assay that can help predict the response of patients with nvAMD to anti-VEGF monotherapy and suggest that therapies targeting both ANGPTL4 and VEGF will be a more effective approach for the treatment of this blinding disease.


Assuntos
Neovascularização de Coroide , Degeneração Macular , Proteína 4 Semelhante a Angiopoietina , Animais , Humor Aquoso/metabolismo , Neovascularização de Coroide/tratamento farmacológico , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
J Clin Invest ; 132(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35499076

RESUMO

Hepatocellular carcinoma (HCC) is a major cause of cancer mortality worldwide and available therapies, including immunotherapies, are ineffective for many patients. HCC is characterized by intratumoral hypoxia, and increased expression of hypoxia-inducible factor 1α (HIF-1α) in diagnostic biopsies is associated with patient mortality. Here we report the development of 32-134D, a low-molecular-weight compound that effectively inhibits gene expression mediated by HIF-1 and HIF-2 in HCC cells, and blocks human and mouse HCC tumor growth. In immunocompetent mice bearing Hepa1-6 HCC tumors, addition of 32-134D to anti-PD1 therapy increased the rate of tumor eradication from 25% to 67%. Treated mice showed no changes in appearance, behavior, body weight, hemoglobin, or hematocrit. Compound 32-134D altered the expression of a large battery of genes encoding proteins that mediate angiogenesis, glycolytic metabolism, and responses to innate and adaptive immunity. This altered gene expression led to significant changes in the tumor immune microenvironment, including a decreased percentage of tumor-associated macrophages and myeloid-derived suppressor cells, which mediate immune evasion, and an increased percentage of CD8+ T cells and natural killer cells, which mediate antitumor immunity. Taken together, these preclinical findings suggest that combining 32-134D with immune checkpoint blockade may represent a breakthrough therapy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Humanos , Hipóxia , Neoplasias Hepáticas/genética , Camundongos , Neovascularização Patológica/patologia , Microambiente Tumoral
19.
Front Pharmacol ; 13: 851057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450048

RESUMO

Lymphedema is a chronic inflammatory disorder characterized by edema, fat deposition, and fibrotic tissue remodeling. Despite significant advances in lymphatic biology research, our knowledge of lymphedema pathology is incomplete. Currently, there is no approved pharmacological therapy for this debilitating disease. Hypoxia is a recognized feature of inflammation, obesity, and fibrosis. Understanding hypoxia-regulated pathways in lymphedema may provide new insights into the pathobiology of this chronic disorder and help develop new medicinal treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...