Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 467(2): 373-6, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26431872

RESUMO

The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has multiple functions, including mediating oxidative stress-induced neuronal cell death. This process is associated with disulfide-bonded GAPDH aggregation. Some reports suggest a link between GAPDH and the pathogenesis of several oxidative stress-related diseases. However, the pathological significance of GAPDH aggregation in disease pathogenesis remains unclear due to the lack of an effective GAPDH aggregation inhibitor. In this study, we identified a GAPDH aggregation inhibitor (GAI) peptide and evaluated its biological profile. The decapeptide GAI specifically inhibited GAPDH aggregation in a concentration-dependent manner. Additionally, the GAI peptide did not affect GAPDH glycolytic activity or cell viability. The GAI peptide also exerted a protective effect against oxidative stress-induced cell death in SH-SY5Y cells. This peptide could potentially serve as a tool to investigate GAPDH aggregation-related neurodegenerative and neuropsychiatric disorders and as a possible therapy for diseases associated with oxidative stress-induced cell death.


Assuntos
Inibidores Enzimáticos/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Oligopeptídeos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Neurônios/metabolismo , Neurônios/patologia , Oligopeptídeos/síntese química , Oxirredução , Estresse Oxidativo , Células PC12 , Ligação Proteica , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
J Biol Chem ; 290(43): 26072-87, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26359500

RESUMO

Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by loss of neurons and formation of pathological extracellular deposits induced by amyloid-ß peptide (Aß). Numerous studies have established Aß amyloidogenesis as a hallmark of AD pathogenesis, particularly with respect to mitochondrial dysfunction. We have previously shown that glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) forms amyloid-like aggregates upon exposure to oxidative stress and that these aggregates contribute to neuronal cell death. Here, we report that GAPDH aggregates accelerate Aß amyloidogenesis and subsequent neuronal cell death both in vitro and in vivo. Co-incubation of Aß40 with small amounts of GAPDH aggregates significantly enhanced Aß40 amyloidogenesis, as assessed by in vitro thioflavin-T assays. Similarly, structural analyses using Congo red staining, circular dichroism, and atomic force microscopy revealed that GAPDH aggregates induced Aß40 amyloidogenesis. In PC12 cells, GAPDH aggregates augmented Aß40-induced cell death, concomitant with disruption of mitochondrial membrane potential. Furthermore, mice injected intracerebroventricularly with Aß40 co-incubated with GAPDH aggregates exhibited Aß40-induced pyramidal cell death and gliosis in the hippocampal CA3 region. These observations were accompanied by nuclear translocation of apoptosis-inducing factor and cytosolic release of cytochrome c from mitochondria. Finally, in the 3×Tg-AD mouse model of AD, GAPDH/Aß co-aggregation and mitochondrial dysfunction were consistently detected in an age-dependent manner, and Aß aggregate formation was attenuated by GAPDH siRNA treatment. Thus, this study suggests that GAPDH aggregates accelerate Aß amyloidogenesis, subsequently leading to mitochondrial dysfunction and neuronal cell death in the pathogenesis of AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Peptídeos beta-Amiloides/biossíntese , Animais , Humanos , Camundongos , Camundongos Transgênicos , Microscopia de Força Atômica , Mitocôndrias/fisiologia , Células PC12 , Ratos
3.
J Vet Med Sci ; 76(8): 1189-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24849052

RESUMO

Botulinum neurotoxin type A (BoNT/A) cleaves SNAP-25 and interrupts the release of acetylcholine. We previously reported that BoNT/A subtype 2 (BoNT/A2) ameliorates pathologic behavior more effectively than subtype 1 (BoNT/A1) in a rat Parkinson's disease model. Here, we further show BoNT/A2 has fewer adverse effects than BoNT/A1. We first confirmed that intrastriatal treatments of both BoNT/As had no-effect on dopaminergic terminals in the striatum. SNAP-25 cleaved by BoNT/A2 was strictly localized to the striatum on the injected side; however, SNAP-25 cleaved by BoNT/A1 diffused contralaterally. Furthermore, treatment with BoNT/A1 caused a significant reduction in body weight, while BoNT/A2 treatment did not. These results suggest that BoNT/A2 is more beneficial for clinical application against Parkinson's disease than BoNT/A1.


Assuntos
Toxinas Botulínicas Tipo A/efeitos adversos , Toxinas Botulínicas Tipo A/farmacologia , Corpo Estriado/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Western Blotting , Toxinas Botulínicas Tipo A/administração & dosagem , Neurônios Dopaminérgicos/efeitos dos fármacos , Imunofluorescência , Proteólise , Ratos , Redução de Peso/efeitos dos fármacos
4.
Biochem Biophys Res Commun ; 447(2): 311-4, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24713302

RESUMO

Recent reports indicate that interruption of acetylcholine release by intrastriatal injection of botulinum neurotoxin type A (BoNT/A) in a rat Parkinson's disease model reduces pathogenic behavior without adverse side effects such as memory dysfunction. Current knowledge suggests that BoNT/A subtype 1 (BoNT/A1) and BoNT/A subtype 2 (BoNT/A2) exert different effects. In the present study, we compared the effects of BoNT/A1 and BoNT/A2 on rotation behavior and in vivo cleavage of presynaptic protein SNAP-25 in a rat unilateral 6-hydroxydopamine-induced Parkinson's disease model. BoNT/A2 more effectively reduced pathogenic behavior by efficiently cleaving SNAP-25 in the striatum compared with that of BoNT/A1. Our results suggest that BoNT/A2 has greater clinical therapeutic value for treating subjects with Parkinson's disease compared to that of BoNT/A1.


Assuntos
Toxinas Botulínicas Tipo A/administração & dosagem , Doença de Parkinson Secundária/tratamento farmacológico , Animais , Toxinas Botulínicas Tipo A/efeitos adversos , Colina O-Acetiltransferase/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Oxidopamina/farmacologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/fisiopatologia , Proteólise , Ratos , Rotação , Proteína 25 Associada a Sinaptossoma/metabolismo
5.
J Biotechnol ; 157(2): 326-33, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22079868

RESUMO

There has been a dramatic expansion of the literature on RNA interference and with it, increasing interest in the potential clinical utility of targeted inhibition of gene expression and associated protein knockdown. However, a critical factor limiting the experimental and therapeutic application of RNA interference is the ability to deliver small interfering RNAs (siRNAs), particularly in the central nervous system, without complications such as toxicity and inflammation. Here we show that a single intracerebroventricular injection of Accell siRNA, a new type of naked siRNA that has been modified chemically to allow for delivery in the absence of transfection reagents, even into differentiated cells such mature neurons, leads to neuron-specific protein knockdown in the adult rat brain. Following in vivo delivery, targeted Accell siRNAs were incorporated successfully into various types of mature neurons, but not glia, for 1 week in diverse brain regions (cortex, striatum, hippocampus, midbrain, and cerebellum) with an efficacy of delivery of approximately 97%. Immunohistochemical and Western blotting analyses revealed widespread, targeted inhibition of the expression of two well-known reference proteins, cyclophilin-B (38-68% knockdown) and glyceraldehyde 3-phosphate dehydrogenase (23-34% knockdown). These findings suggest that this novel procedure is likely to be useful in experimental investigations of neuropathophysiological mechanisms.


Assuntos
Encéfalo/metabolismo , Técnicas de Silenciamento de Genes/métodos , Neurônios/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Animais , Encéfalo/citologia , Diferenciação Celular , Ciclofilinas/genética , Ciclofilinas/metabolismo , Sistemas de Liberação de Medicamentos , Regulação da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Injeções Intraventriculares , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Especificidade de Órgãos , RNA Interferente Pequeno/química , Ratos
6.
J Vet Med Sci ; 74(1): 27-34, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21873810

RESUMO

Macrophages are essential for controlling the majority of infections, and are mediators of natural immunity. During infection, lipopolysaccharide (LPS) stimulates macrophages to produce pro-inflammatory cytokines. Adenosine and ATP released into the extracellular space by immunological stimuli have been shown to regulate various immune functions. More recently, it has been shown adenosine and ATP have a critical role on the physiological negative feedback mechanism for limitation and termination of tissue-specific and systemic inflammatory responses. It was useful and meaningful to gain information about interaction between LPS, which generates the inflammation, and adenosine and ATP, which terminate the inflammation. We evaluate effects of adenosine and ATP on the production of cytokines related to inflammation in canine macrophage cell line DH82 cells. Adenosine and ATP respectively increased the production of IL-10 without affecting the production of IL-6, TNF-α and IL-12 in DH82 cells. In addition, adenosine and ATP prevented the production of LPS-induced IL-6, TNF-α and IL-12 in DH82 cells. In contrast, adenosine and ATP potentiated LPS-induced IL-10 production in DH82 cells. Moreover, adenosine, but not ATP inhibited LPS-induced expression of TLR4 in DH82 cells. These results suggest that conditions related to increased adenosine and/or ATP may play an important role in the inflammatory reactions.


Assuntos
Trifosfato de Adenosina/farmacologia , Adenosina/farmacologia , Citocinas/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Linhagem Celular , Citocinas/genética , Cães , Regulação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...