Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(17): 8218-8224, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37647545

RESUMO

The tunability of the optical properties of lead halide perovskite nanocrystals makes them highly appealing for applications. Halide anion exchange and quantum confinement enable tailoring of the band gap. For spintronics, the Landé g-factors of electrons and holes are essential. Using empirical tight-binding and k·p methods, we calculate them for nanocrystals of all-inorganic lead halide perovskites CsPbX3 (X = I, Br, Cl). The hole g-factor band gap dependence follows the universal law found for bulk perovskites, while for electrons, a considerable modification is predicted. Based on the k·p analysis, we conclude that this difference arises from the interaction of the bottom conduction band with the spin-orbit split electron states. These predictions are confirmed experimentally for electron and hole g-factors in CsPbI3 nanocrystals in a glass matrix, measured by time-resolved Faraday ellipticity in a magnetic field at cryogenic temperatures.

2.
Nat Commun ; 13(1): 6980, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379952

RESUMO

Optoelectronic functionalities of monolayer transition-metal dichalcogenide (TMDC) semiconductors are characterized by the emergence of externally tunable, correlated many-body complexes arising from strong Coulomb interactions. However, the vast majority of such states susceptible to manipulation has been limited to the region in energy around the fundamental bandgap. We report the observation of tightly bound, valley-polarized, UV-emissive trions in monolayer TMDC transistors: quasiparticles composed of an electron from a high-lying conduction band with negative effective mass, a hole from the first valence band, and an additional charge from a band-edge state. These high-lying trions have markedly different optical selection rules compared to band-edge trions and show helicity opposite to that of the excitation. An electrical gate controls both the oscillator strength and the detuning of the excitonic transitions, and therefore the Rabi frequency of the strongly driven three-level system, enabling excitonic quantum interference to be switched on and off in a deterministic fashion.

3.
J Chem Phys ; 153(3): 034706, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32716167

RESUMO

Monolayers of transition metal dichalcogenides present an intriguing platform to investigate the interplay of excitonic complexes in two-dimensional semiconductors. Here, we use optical spectroscopy to study the light-matter coupling and non-equilibrium relaxation dynamics of three-particle exciton states, commonly known as trions. We identify the consequences of the exchange interaction for the trion fine structure in tungsten-based monolayer materials from variational calculations and experimentally determine the resulting characteristic differences in their oscillator strength. It allows us to quantitatively extract trion populations from time-resolved photoluminescence measurements and monitor their dynamics after off-resonant optical injection. At liquid helium temperature, we observe a pronounced non-equilibrium distribution of the trions during their lifetime with comparatively slow equilibration that occurs on time-scales up to several hundreds of ps. In addition, we find an intriguing regime of population inversion at lowest excitation densities, which builds up and is maintained for tens of picoseconds. At a higher lattice temperature, the equilibrium is established more rapidly and the inversion disappears, highlighting the role of thermal activation for efficient scattering between exchange-split trions.

4.
Phys Rev Lett ; 125(26): 267401, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449708

RESUMO

We experimentally demonstrate dressing of the excited exciton states by a continuously tunable Fermi sea of free charge carriers in a monolayer semiconductor. It represents an unusual scenario of two-particle excitations of charged excitons previously inaccessible in conventional material systems. We identify excited state trions, accurately determine their binding energies in the zero-density limit for both electron- and hole-doped regimes, and observe emerging many-body phenomena at elevated doping. Combining experiment and theory we gain access to the intra-exciton coupling facilitated by the interaction with free charge carriers. We provide evidence for a process of autoionization for quasiparticles, a unique scattering pathway available for excited states in atomic systems. Finally, we demonstrate a complete transfer of the optical transition strength from the excited excitons to dressed Fermi-polaron states as well as the associated light emission from their nonequilibrium populations.

5.
Nano Lett ; 18(1): 373-380, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29160075

RESUMO

We address spin properties and spin dynamics of carriers and charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells. Magneto-optical studies are performed by time-resolved and polarization-resolved photoluminescence, spin-flip Raman scattering and picosecond pump-probe Faraday rotation in magnetic fields up to 30 T. We show that at low temperatures the nanoplatelets are negatively charged so that their photoluminescence is dominated by radiative recombination of negatively charged excitons (trions). Electron g-factor of 1.68 is measured, and heavy-hole g-factor varying with increasing magnetic field from -0.4 to -0.7 is evaluated. Hole g-factors for two-dimensional structures are calculated for various hole confining potentials for cubic- and wurtzite lattice in CdSe core. These calculations are extended for various quantum dots and nanoplatelets based on II-VI semiconductors. We developed a magneto-optical technique for the quantitative evaluation of the nanoplatelets orientation in ensemble.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...