Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 173(1): 77-92, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18556777

RESUMO

Ischemic brain injury causes tissue damage and neuronal death. The deficits can often be permanent because adult neurons fail to regenerate. One barrier to neuronal regeneration is the formation of the glial scar, a repair mechanism that is otherwise necessary to seal off necrotic areas. The process of gliosis has been well described, but the mechanisms regulating the robust production of scar components after injury remain poorly understood. Here we show that the early growth response 1 transcriptional factor (Egr-1, also called Krox24, Zif268, and NGFI-A) is expressed in astrocytes in the ventricular wall, corpus callosum, and striatum of normal mouse brain. After experimental stroke caused by permanent occlusion of the middle cerebral artery, Egr-1 was expressed long term in reactive astrocytes that accumulate around the injury site. Gain- and loss-of-function studies in primary astrocytes indicated that Egr-1 regulates the transcription of chondroitin sulfate proteoglycans genes, the main extracellular matrix proteins of the glial scar. Egr-1 bound to a site within the phosphacan promoter and transactivated its expression. Egr-1-deficient mice accumulated lower levels of phosphacan RNA and protein than wild-type mice after stroke, but there were no measurable differences in neurite outgrowth toward the infarct area between the two groups. Our findings suggest that Egr-1 is an important component of the transcriptional network regulating genes involved in gliosis after ischemic injury.


Assuntos
Astrócitos/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Regulação da Expressão Gênica/fisiologia , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/biossíntese , Acidente Vascular Cerebral/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Ensaio de Desvio de Mobilidade Eletroforética , Imunofluorescência , Expressão Gênica , Gliose/metabolismo , Gliose/patologia , Humanos , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , RNA Mensageiro/análise , Ratos , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Acidente Vascular Cerebral/patologia , Transfecção
2.
J Cell Mol Med ; 11(6): 1395-407, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18205709

RESUMO

Mouse embryonic endothelial progenitor cells (eEPCs) acquire a mature phenotype after treatment with cyclic adenosine monophosphate (cAMP), suggesting an involvement of Raf serine/threonine kinases in the differentiation process. To test this idea, we investigated the role of B-Raf and C-Raf in proliferation and differentiation of eEPCs by expressing fusion proteins consisting of the kinase domains from Raf molecules and the hormone binding site of the estrogen receptor (ER), or its variant, the tamoxifen receptor. Our findings show that both B- and C-Raf kinase domains, when lacking adjacent regulatory parts, are equally effective in inducing eEPC differentiation. In contrast, the C-Raf kinase domain is a more potent stimulator of eEPC proliferation than B-Raf. In a complimentary approach, we used siRNA silencing to knockdown endogenously expressed B-Raf and C-Raf in eEPCs. In this experimental setting, we found that eEPCs lacking B-Raf failed to differentiate, whereas loss-of C-Raf function primarily slowed cell growth without impairing cAMP-induced differentiation. These findings were further corroborated in B-Raf null eEPCs, isolated from the corresponding knockout embryos, which failed to differentiate in vitro. Thus, gain- and loss-of-function experiments point to distinct roles of B-Raf and C-Raf in regulating growth and differentiation of endothelial progenitor cells, which may harbour therapeutic implications.


Assuntos
Diferenciação Celular , Embrião de Mamíferos/citologia , Células Endoteliais/citologia , Células Endoteliais/enzimologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Células-Tronco/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Separação Celular , Clonagem Molecular , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/enzimologia , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Estrogênios/farmacologia , Engenharia Genética , Camundongos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/deficiência , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/deficiência , Interferência de RNA/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/enzimologia
3.
FASEB J ; 19(11): 1576-8, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16009705

RESUMO

Clonal embryonic endothelial progenitor cells (eEPCs) isolated from embryonic day 7.5 mice home specifically to hypoxic areas in mouse tumor metastases but spare normal organs and do not form carcinomas. Based on these results, we assessed the potential of eEPCs to enhance vascularization and limit organ dysfunction after ischemia in syngenic and xenotypic organisms. The angiogenic potential of eEPCs was evaluated in chronic ischemic rabbit hindlimbs after regional application by retroinfusion. eEPC treatment improved limb perfusion, paralleled by an increase in capillary density and collateral blood vessel number. Systemic eEPC infusion into mice after ischemic cardiac insult increased postischemic heart output measured by a marked improvement in left ventricle developed pressure and both systolic and diastolic functions. In vitro, eEPCs strongly induced vascular outgrowths from aortic rings. To address the molecular basis of this intrinsic angiogenic potential, we investigated the eEPC transcriptome. Genome-wide Affymetrix GeneChip analysis revealed that the eEPCs express a wealth of secreted factors known to induce angiogenesis, tissue remodeling, and organogenesis that may contribute to the eEPC-mediated beneficial effects. Our findings show that eEPCs induce blood vessel growth and cardioprotection in severe ischemic conditions providing a readily available source to study the mechanisms of neovascularization and tissue recovery.


Assuntos
Embrião de Mamíferos/citologia , Infarto do Miocárdio/terapia , Neovascularização Fisiológica , Transplante de Células-Tronco , Células-Tronco/fisiologia , Animais , Células Cultivadas , Membro Posterior/irrigação sanguínea , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...