Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(11): 5250-5256, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37220075

RESUMO

Structural or crystal asymmetry is a necessary condition for the emergence of zero-bias photocurrent in light detectors. Structural asymmetry has been typically achieved via p-n doping, which is a technologically complex process. Here, we propose an alternative approach to achieve zero-bias photocurrent in two-dimensional (2D) material flakes exploiting the geometrical nonequivalence of source and drain contacts. As a prototypical example, we equip a square-shaped flake of PdSe2 with mutually orthogonal metal leads. Upon uniform illumination with linearly polarized light, the device demonstrates nonzero photocurrent which flips its sign upon 90° polarization rotation. The origin of zero-bias photocurrent lies in a polarization-dependent lightning-rod effect. It enhances the electromagnetic field at one contact from the orthogonal pair and selectively activates the internal photoeffect at the respective metal-PdSe2 Schottky junction. The proposed technology of contact engineering is independent of a particular light-detection mechanism and can be extended to arbitrary 2D materials.

2.
Nano Lett ; 23(1): 220-226, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36546884

RESUMO

Photoconductivity of novel materials is the key property of interest for design of photodetectors, optical modulators, and switches. Despite the photoconductivity of most novel 2d materials having been studied both theoretically and experimentally, the same is not true for 2d p-n junctions that are necessary blocks of most electronic devices. Here, we study the sub-terahertz photocoductivity of gapped bilayer graphene with electrically induced p-n junctions. We find a strong positive contribution from junctions to resistance, temperature resistance coefficient, and photoresistivity at cryogenic temperatures T ∼ 20 K. The contribution to these quantities from junctions exceeds strongly the bulk values at uniform channel doping even at small band gaps of ∼10 meV. We further show that positive junction photoresistance is a hallmark of interband tunneling, and not of intraband thermionic conduction. Our results point to the possibility of creating various interband tunneling devices based on bilayer graphene, including steep-switching transistors and selective sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...