Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Phys Med ; 86: 1-5, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34044284

RESUMO

The International Atomic Energy Agency (IAEA), jointly with the World Health Organization (WHO), has operated a postal dosimetry audit program for radiotherapy centers worldwide since 1969. In 2017 the IAEA introduced a new methodology based on radiophotoluminescent dosimetry (RPLD) for these audits. The detection system consists of a phosphate glass dosimeter inserted in a plastic capsule that is kept in measuring position with a PMMA holder during irradiation. Correction factors for this holder were obtained using experimental methods. In this work these methods are described and the resulting factors are verified by means of Monte Carlo simulation with the general-purpose code PENELOPE for a range of photon beam qualities relevant in radiotherapy. The study relies on a detailed geometrical representation of the experimental setup. Various photon beams were obtained from faithful modeling of the corresponding linacs. Monte Carlo simulation transport parameters are selected to ensure subpercent accuracy. The simulated correction factors fall in the interval 1.005-1.008 (±0.2%), with deviations with respect to experimental values not larger than 0.2(2)%. This study corroborates the validity of the holder correction factors currently used for the IAEA audits.


Assuntos
Energia Nuclear , Dosímetros de Radiação , Método de Monte Carlo , Aceleradores de Partículas , Fótons , Radiometria , Dosagem Radioterapêutica
2.
Phys Med Biol ; 60(15): 5925-38, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26184983

RESUMO

The aim of this work was to evaluate the influence of anatomical variability between subjects and of the partial volume effect (PVE) on the standardized Specific Uptake Ratio (SUR) in [(123)I]FP-bib SPECT studies. To this end, magnetic resonance (MR) images of 23 subjects with differences in the striatal volume of up to 44% were segmented and used to generate a database of 138 Monte Carlo simulated SPECT studies. Data included normal uptakes and pathological cases. Studies were reconstructed by filtered back projection (FBP) and the ordered-subset expectation-maximization algorithm. Quantification was carried out by applying a reference method based on regions of interest (ROIs) derived from the MR images and ROIs derived from the Automated Anatomical Labelling map. Our results showed that, regardless of anatomical variability, the relationship between calculated and true SUR values for caudate and putamen could be described by a multiple linear model which took into account the spill-over phenomenon caused by PVE (R² ≥ 0.963 for caudate and ≥0.980 for putamen) and also by a simple linear model (R(2) ≥ 0.952 for caudate and ≥0.973 for putamen). Calculated values were standardized by inverting both linear systems. Differences between standardized and true values showed that, although the multiple linear model was the best approach in terms of variability (X² ≥ 11.79 for caudate and ≤7.36 for putamen), standardization based on a simple linear model was also suitable (X² ≥ 12.44 for caudate and ≤12.57 for putamen).


Assuntos
Algoritmos , Compostos Radiofarmacêuticos/farmacocinética , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Interpretação Estatística de Dados , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Humanos , Radioisótopos do Iodo/farmacocinética , Método de Monte Carlo , Neostriado/diagnóstico por imagem , Tropanos/farmacocinética
3.
Phys Med Biol ; 60(11): N219-29, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25984796

RESUMO

Monte Carlo simulation of linear accelerators (linacs) depends on the accurate geometrical description of the linac head. The geometry of the Varian TrueBeam linac is not available to researchers. Instead, the company distributes phase-space files of the flattening-filter-free (FFF) beams tallied at a plane located just upstream of the jaws. Yet, Monte Carlo simulations based on third-party tallied phase spaces are subject to limitations. In this work, an experimentally based geometry developed for the simulation of the FFF beams of the Varian TrueBeam linac is presented. The Monte Carlo geometrical model of the TrueBeam linac uses information provided by Varian that reveals large similarities between the TrueBeam machine and the Clinac 2100 downstream of the jaws. Thus, the upper part of the TrueBeam linac was modeled by introducing modifications to the Varian Clinac 2100 linac geometry. The most important of these modifications is the replacement of the standard flattening filters by ad hoc thin filters. These filters were modeled by comparing dose measurements and simulations. The experimental dose profiles for the 6 MV and 10 MV FFF beams were obtained from the Varian Golden Data Set and from in-house measurements performed with a diode detector for radiation fields ranging from 3 × 3 to 40 × 40 cm(2) at depths of maximum dose of 5 and 10 cm. Indicators of agreement between the experimental data and the simulation results obtained with the proposed geometrical model were the dose differences, the root-mean-square error and the gamma index. The same comparisons were performed for dose profiles obtained from Monte Carlo simulations using the phase-space files distributed by Varian for the TrueBeam linac as the sources of particles. Results of comparisons show a good agreement of the dose for the ansatz geometry similar to that obtained for the simulations with the TrueBeam phase-space files for all fields and depths considered, except for the 40 × 40 cm(2) field where the ansatz geometry was able to reproduce the measured dose more accurately. Our approach overcomes some of the limitations of using the Varian phase-space files. It makes it possible to: (i) adapt the initial beam parameters to match measured dose profiles; (ii) reduce the statistical uncertainty to arbitrarily low values; and (iii) assess systematic uncertainties (type B) by using different Monte Carlo codes. One limitation of using phase-space files that is retained in our model is the impossibility of performing accurate absolute dosimetry simulations because the geometrical description of the TrueBeam ionization chamber remains unknown.


Assuntos
Simulação por Computador , Modelos Biológicos , Método de Monte Carlo , Aceleradores de Partículas/instrumentação , Radiometria/instrumentação , Radiometria/métodos , Software , Incerteza
4.
Phys Med ; 30(1): 57-62, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23597423

RESUMO

Minibeam radiation therapy (MBRT) is an innovative radiotherapy approach based on the well-established tissue sparing effect of arrays of quasi-parallel micrometre-sized beams. In order to guide the preclinical trials in progress at the European Synchrotron Radiation Facility (ESRF), a Monte Carlo-based dose calculation engine has been developed and successfully benchmarked with experimental data in anthropomorphic phantoms. Additionally, a realistic example of treatment plan is presented. Despite the micron scale of the voxels used to tally dose distributions in MBRT, the combination of several efficiency optimisation methods allowed to achieve acceptable computation times for clinical settings (approximately 2 h). The calculation engine can be easily adapted with little or no programming effort to other synchrotron sources or for dose calculations in presence of contrast agents.


Assuntos
Método de Monte Carlo , Tratamentos com Preservação do Órgão/métodos , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica
5.
Strahlenther Onkol ; 189(10): 881-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24005581

RESUMO

BACKGROUND: The accurate Monte Carlo simulation of a linac requires a detailed description of its geometry and the application of elaborate variance-reduction techniques for radiation transport. Both tasks entail a substantial coding effort and demand advanced knowledge of the intricacies of the Monte Carlo system being used. METHODS: PRIMO, a new Monte Carlo system that allows the effortless simulation of most Varian and Elekta linacs, including their multileaf collimators and electron applicators, is introduced. PRIMO combines (1) accurate physics from the PENELOPE code, (2) dedicated variance-reduction techniques that significantly reduce the computation time, and (3) a user-friendly graphical interface with tools for the analysis of the generated data. PRIMO can tally dose distributions in phantoms and computerized tomographies, handle phase-space files in IAEA format, and import structures (planning target volumes, organs at risk) in the DICOM RT-STRUCT standard. RESULTS: A prostate treatment, conformed with a high definition Millenium multileaf collimator (MLC 120HD) from a Varian Clinac 2100 C/D, is presented as an example. The computation of the dose distribution in 1.86×3.00×1.86 mm3 voxels with an average 2% standard statistical uncertainty, performed on an eight-core Intel Xeon at 2.67 GHz, took 1.8 h-excluding the patient-independent part of the linac, which required 3.8 h but it is simulated only once. CONCLUSION: PRIMO is a self-contained user-friendly system that facilitates the Monte Carlo simulation of dose distributions produced by most currently available linacs. This opens the door for routine use of Monte Carlo in clinical research and quality assurance purposes. It is free software that can be downloaded from http://www.primoproject.net.


Assuntos
Gráficos por Computador , Método de Monte Carlo , Aceleradores de Partículas/instrumentação , Neoplasias da Próstata/mortalidade , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/instrumentação , Software , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Masculino , Dosagem Radioterapêutica , Radioterapia Conformacional/métodos
6.
Phys Med Biol ; 58(8): 2509-22, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23514896

RESUMO

This paper uses Monte Carlo simulations to calculate the Spencer-Attix water/medium stopping-power ratios (sw, med) for the dosimetry of scanned proton pencil beams. It includes proton energies from 30 to 350 MeV and typical detection materials such as air (ionization chambers), radiochromic film, gadolinium oxysulfide (scintillating screens), silicon and lithium fluoride. Track-ends and particles heavier than protons were found to have a negligible effect on the water/air stopping-power ratios (sw, air), whereas the mean excitation energy values were found to carry the largest source of uncertainty. The initial energy spread of the beam was found to have a minor influence on the sw, air values in depth. The water/medium stopping-power ratios as a function of depth in water were found to be quite constant for air and radiochromic film-within 2.5%. Also, the sw, med values were found to have no clinically relevant dependence on the radial distance-except for the case of gadolinium oxysulfide and proton radiography beams. In conclusion, the most suitable detection materials for depth-dose measurements in water were found to be air and radiochromic film active layer, although a small correction is still needed to compensate for the different sw, med values between the plateau and the Bragg peak region. Also, all the detection materials studied in this work-except for gadolinium oxysulfide-were found to be suitable for lateral dose profiles and field-specific dose distribution measurements in water.


Assuntos
Terapia com Prótons , Radiometria/métodos , Água , Ar , Dosagem Radioterapêutica
7.
Med Phys ; 40(2): 021706, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23387729

RESUMO

PURPOSE: To present a practical method for calibrating the zero position of asymmetric jaws that provides higher accuracy at the central axis and improves dose homogeneity in the abutting region of half-beams. METHODS: Junction doses were measured for each asymmetric jaw using the double-exposure technique and electronic portal imaging devices. The junction dose was determined as a function of jaw position. The shift in the zero jaw position (or in its corresponding potentiometer readout) required to correct for the measured junction dose could thus be obtained. The jaw calibration was then modified to introduce the calculated shift and therefore achieve an accurate zero position in order to provide a relative junction dose that was as close to zero as possible. RESULTS: All the asymmetric jaws from four medical linear accelerators were calibrated with the new calibration procedure. Measured relative junction doses at gantry 0° were reduced from a maximum of ±40% to a maximum of ±8% for all the jaws in the four considered accelerators. These results were valid for 6 MV and 18 MV photon beams and for any combination of asymmetric jaws set to zero. The calibration was stable over a long period of time; therefore, the need for recalibrating is seldom necessary. CONCLUSIONS: Accurate calibration of the zero position of the jaws is feasible in current medical linear accelerators. The proposed procedure is fast and it improves dose homogeneity at the junction of half-beams, thus, allowing a more accurate and safer use of these techniques.


Assuntos
Radioterapia Assistida por Computador/métodos , Calibragem , Equipamentos e Provisões Elétricas , Radiometria , Radioterapia Assistida por Computador/instrumentação
8.
Strahlenther Onkol ; 189(1): 68-73, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23161122

RESUMO

BACKGROUND: Irradiation of intraocular tumors requires dedicated techniques, such as brachytherapy with (106)Ru plaques. The currently available treatment planning system relies on the assumption that the eye is a homogeneous water sphere and on simplified radiation transport physics. However, accurate dose distributions and their assessment demand better models for both the eye and the physics. METHODS: The Monte Carlo code PENELOPE, conveniently adapted to simulate the beta decay of (106)Ru over (106)Rh into (106)Pd, was used to simulate radiation transport based on a computerized tomography scan of a patient's eye. A detailed geometrical description of two plaques (models CCA and CCB) from the manufacturer BEBIG was embedded in the computerized tomography scan. RESULTS: The simulations were firstly validated by comparison with experimental results in a water phantom. Dose maps were computed for three plaque locations on the eyeball. From these maps, isodose curves and cumulative dose-volume histograms in the eye and for the structures at risk were assessed. For example, it was observed that a 4-mm anterior displacement with respect to a posterior placement of a CCA plaque for treating a posterior tumor would reduce from 40 to 0% the volume of the optic disc receiving more than 80 Gy. Such a small difference in anatomical position leads to a change in the dose that is crucial for side effects, especially with respect to visual acuity. The radiation oncologist has to bring these large changes in absorbed dose in the structures at risk to the attention of the surgeon, especially when the plaque has to be positioned close to relevant tissues. CONCLUSION: The detailed geometry of an eye plaque in computerized and segmented tomography of a realistic patient phantom was simulated accurately. Dose-volume histograms for relevant anatomical structures of the eye and the orbit were obtained with unprecedented accuracy. This represents an important step toward an optimized brachytherapy treatment of ocular tumors.


Assuntos
Braquiterapia/métodos , Simulação por Computador , Neoplasias Oculares/radioterapia , Olho/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioisótopos de Rubídio/uso terapêutico , Adulto , Olho/diagnóstico por imagem , Neoplasias Oculares/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador , Método de Monte Carlo , Imagens de Fantasmas , Lesões por Radiação/prevenção & controle , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X , Acuidade Visual/efeitos da radiação
9.
Phys Med Biol ; 57(22): 7741-51, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23123926

RESUMO

Retinoblastoma is the most common eye tumour in childhood. According to the available long-term data, the best outcome regarding tumour control and visual function has been reached by external beam radiotherapy. The benefits of the treatment are, however, jeopardized by a high incidence of radiation-induced secondary malignancies and the fact that irradiated bones grow asymmetrically. In order to better exploit the advantages of external beam radiotherapy, it is necessary to improve current techniques by reducing the irradiated volume and minimizing the dose to the facial bones. To this end, dose measurements and simulated data in a water phantom are essential. A Varian Clinac 2100 C/D operating at 6 MV is used in conjunction with a dedicated collimator for the retinoblastoma treatment. This collimator conforms a 'D'-shaped off-axis field whose irradiated area can be either 5.2 or 3.1 cm(2). Depth dose distributions and lateral profiles were experimentally measured. Experimental results were compared with Monte Carlo simulations' run with the penelope code and with calculations performed with the analytical anisotropic algorithm implemented in the Eclipse treatment planning system using the gamma test. penelope simulations agree reasonably well with the experimental data with discrepancies in the dose profiles less than 3 mm of distance to agreement and 3% of dose. Discrepancies between the results found with the analytical anisotropic algorithm and the experimental data reach 3 mm and 6%. Although the discrepancies between the results obtained with the analytical anisotropic algorithm and the experimental data are notable, it is possible to consider this algorithm for routine treatment planning of retinoblastoma patients, provided the limitations of the algorithm are known and taken into account by the medical physicist and the clinician. Monte Carlo simulation is essential for knowing these limitations. Monte Carlo simulation is required for optimizing the treatment technique and the dedicated collimator.


Assuntos
Método de Monte Carlo , Fótons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Assistida por Computador/instrumentação , Retinoblastoma/radioterapia , Humanos , Dosagem Radioterapêutica
10.
Med Phys ; 39(5): 2829-38, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22559655

RESUMO

PURPOSE: Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-µm-wide microbeams spaced by 200-400 µm) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. METHODS: The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. RESULTS: Good agreement between MC simulations and experimental results was achieved, even at the interfaces between two different media. Optimization of the simulation parameters and the use of VR techniques saved a significant amount of computation time. Finally, parallelization of the simulations improved even further the calculation time, which reached 1 day for a typical irradiation case envisaged in the forthcoming clinical trials in MRT. An example of MRT treatment in a dog's head is presented, showing the performance of the calculation engine. CONCLUSIONS: The development of the first MC-based calculation engine for the future TPS devoted to MRT has been accomplished. This will constitute an essential tool for the future clinical trials on pets at the ESRF. The MC engine is able to calculate dose distributions in micrometer-sized bins in complex voxelized CT structures in a reasonable amount of time. Minimization of the computation time by using several approaches has led to timings that are adequate for pet radiotherapy at synchrotron facilities. The next step will consist in its integration into a user-friendly graphical front-end.


Assuntos
Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia/instrumentação , Síncrotrons , Absorção , Animais , Benchmarking , Cães , Humanos , Fótons/uso terapêutico , Fatores de Tempo
11.
Phys Med Biol ; 57(10): 3013-24, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22538321

RESUMO

A method based on a combination of the variance-reduction techniques of particle splitting and Russian roulette is presented. This method improves the efficiency of radiation transport through linear accelerator geometries simulated with the Monte Carlo method. The method named as 'splitting-roulette' was implemented on the Monte Carlo code [Formula: see text] and tested on an Elekta linac, although it is general enough to be implemented on any other general-purpose Monte Carlo radiation transport code and linac geometry. Splitting-roulette uses any of the following two modes of splitting: simple splitting and 'selective splitting'. Selective splitting is a new splitting mode based on the angular distribution of bremsstrahlung photons implemented in the Monte Carlo code [Formula: see text]. Splitting-roulette improves the simulation efficiency of an Elekta SL25 linac by a factor of 45.


Assuntos
Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Fótons/uso terapêutico , Probabilidade , Software
12.
Med Phys ; 39(1): 119-31, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22225281

RESUMO

PURPOSE: A new radiotherapy technique, named microbeam radiation therapy (MRT), is under development at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). This innovative method is based on the fact that normal tissue can withstand high radiation doses in small volumes without any significant damage. The promising results obtained in the preclinical studies have paved the way to forthcoming clinical trials, which are currently in preparation. Highly accurate dose calculations at the treatment planning stage are required in this context. The aims of this study are the development and experimental benchmarking of a photon beam source model, which will be the core of the future MRT treatment planning system (TPS). METHODS: The ID17 x-ray source was modeled by the synchrotron ray tracing code SHADOW. The Monte Carlo (MC) simulation code PENELOPE/PENEASY was employed to transport the photon beam from the source to the patient position through all the beamline components. The phase-space state variables of the particles reaching the patient position were used as an input to generate a photon beam model. Computed dose distributions in a homogeneous media were experimentally verified by using Gafchromic(®) films in a solid-water phantom. Benchmarking was split into two phases. First, the lateral dose profiles and the percentage depth-dose (PDD) curves in the broad beam configuration were considered. The acceptability criteria for radiotherapy dose computations recommended by international protocols such as the Technical Reports Series 430 (TRS 430) of the International Atomic Energy Agency (IAEA) were used. Second, the analogous dosimetric magnitudes in MRT irradiations, i.e., PDD of the central microbeam and the corresponding peak-to-valley dose ratios (PVDR) were evaluated and compared with MC calculations. RESULTS: A full characterization of the ID17 Biomedical Beamline (ESRF) synchrotron x-ray source and the development of an accurate photon beam model were achieved in this work. Calculated and experimental dose distributions agreed to within the recommended acceptability criteria described in international codes of practice (TRS 430) for broad beam irradiations. The overall deviation in low gradient areas amounted to 2%-3%. The maximum distance-to-agreement in high gradient regions was lower than 0.7 mm. MC calculations also reproduced MRT experimental results within uncertainty bars. These results validate the photon beam model for its use in MRT radiation therapy calculations. CONCLUSIONS: The first MC synchrotron photon beam model for MRT irradiations that reproduces experimental dose distributions in homogeneous media has been developed. This beam model will constitute an essential component of the TPS calculation engine for patient dose computation in forthcoming MRT clinical trials.


Assuntos
Modelos Biológicos , Modelos Estatísticos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/instrumentação , Síncrotrons/instrumentação , Ensaios Clínicos como Assunto , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Método de Monte Carlo , Fótons/uso terapêutico , Dosagem Radioterapêutica , Radioterapia Conformacional/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Med Phys ; 38(3): 1468-72, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21520858

RESUMO

PURPOSE: To study the influence of the field setup on the dosimetry at the junction in single-isocenter half-beam techniques. METHODS: The dosimetry at the junction for a two-field setup with the gantry at zero was first evaluated with radiochromic films. A three-field setup, with an anterior field and two opposed lateral fields, was also analyzed for two different relative positions of the fields involved. In all cases, the dose increase at the central axis, called the junction dose, was measured. RESULTS: Junction doses varied greatly with the setup. For the three-field setup, the junction dose differed from that obtained with the two-field setup, and it greatly depended on the relative position of the fields. When the anterior field was closer to the gantry than the lateral fields, a field gap occurred and the junction dose was negative. When the anterior field was farther from the gantry than the lateral fields, a field overlap was obtained and the junction dose was positive. The difference in the junction dose between the three-field setups was around 18% for the three accelerators evaluated. CONCLUSIONS: Having a uniform dose distribution for two fields at gantry 0 degrees does not guarantee a uniform distribution at other gantry angles. Junction doses are largely affected by the relative position of the radiation fields, which may have an impact in clinical practice. Therefore, any method aiming to assess or to optimize the dose homogeneity at the junction should take this effect into account.


Assuntos
Dosimetria Fotográfica/métodos , Dosimetria Fotográfica/instrumentação
14.
Phys Med Biol ; 55(15): 4375-88, 2010 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-20647606

RESUMO

The purpose of this work is to define safe irradiation protocols in microbeam radiation therapy. The intense synchrotron-generated x-ray beam used for the treatment is collimated and delivered in an array of 50 microm-sized rectangular fields with a centre-to-centre distance between microplanes of 400 microm. The absorbed doses received by the tumour and the healthy tissues in a human head phantom have been assessed by means of Monte Carlo simulations. The identification of safe dose limits is carried out by evaluating the maximum peak and valley doses achievable in the tumour while keeping the valley doses in the healthy tissues under tolerances. As the skull receives a significant fraction of the dose, the dose limits are referred to this tissue. Dose distributions with high spatial resolution are presented for various tumour positions, skull thicknesses and interbeam separations. Considering a unidirectional irradiation (field size of 2 x 2 cm(2)) and a centrally located tumour, the largest peak and valley doses achievable in the tumour are 55 Gy and 2.6 Gy, respectively. The corresponding maximum valley doses received by the skin, bone and healthy brain are 4 Gy, 14 Gy and 7 Gy (doses in one fraction), respectively, i.e. within tolerances (5% probability of complication within 5 years).


Assuntos
Método de Monte Carlo , Radioterapia/métodos , Osso e Ossos/efeitos da radiação , Encéfalo/efeitos da radiação , Ensaios Clínicos como Assunto , Fracionamento da Dose de Radiação , Humanos , Neoplasias/radioterapia , Radiometria , Pele/efeitos da radiação
15.
Med Phys ; 36(9): 4191-6, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19810493

RESUMO

PURPOSE: Several authors studied the problem of geometrical matching of fields produced by medical linear accelerators. However, a general solution has yet to be published. Currently available solutions are based on parallelism arguments. This study provides a general solution, considering not only parallelism but also field sizes. METHODS: A fixed field with arbitrary field size, gantry, collimator, and couch angle is considered, and another field with a fixed gantry angle is matched to it. A single reference system attached to the treatment couch is used, and two approaches are followed. In the first approach, fixed field sizes are assumed and parallelism of the adjacent field-side planes is imposed. In the second approach, fixed isocenter positions are considered and both parallelism and coincidence between field-side planes are required. RESULTS: When fixed field sizes are assumed, rotation angles are obtained; however, the isocenters may need to be shifted to make side planes coincident and therefore achieve a proper match. When fixed isocenter positions are considered, solutions for all parameters, including the field size, are obtained and an exact geometrical match is achieved. CONCLUSIONS: General expressions to the field-matching problem are found for the two approaches followed, fixed field sizes, and fixed isocenter positions. These results can be applied to any treatment technique and can easily be implemented in modern treatment planning systems.


Assuntos
Aceleradores de Partículas , Radioterapia/métodos , Algoritmos , Planejamento da Radioterapia Assistida por Computador/métodos , Rotação
16.
Phys Med Biol ; 54(18): 5469-81, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19706962

RESUMO

For the treatment of conjunctival lymphoma in the early stages, external beam radiotherapy offers a curative approach. Such treatment requires the use of highly conformed small radiation beams. The beam size is so small that even advanced treatment planning systems have difficulties in calculating dose distributions. One possible approach for optimizing the treatment technique and later performing treatment planning is by means of full Monte Carlo (MC) simulations. In this paper, we compare experimental absorbed dose profiles obtained with a collimator used at the University Hospital Essen, with MC simulations done with the general-purpose radiation transport code PENELOPE. The collimator is also simulated with the hybrid MC code electron Monte Carlo (eMC) implemented in the commercial treatment planning system Eclipse (Varian). The results obtained with PENELOPE have a maximum difference with experimental data of 2.3%, whereas the eMC code differs systematically from the experimental data about 7% in the penumbra tails. We also show that PENELOPE simulations are able to obtain absorbed dose maps with an equivalent statistical uncertainty to the one found with eMC in similar CPU times.


Assuntos
Algoritmos , Neoplasias da Túnica Conjuntiva/radioterapia , Linfoma não Hodgkin/radioterapia , Modelos Biológicos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Alta Energia/métodos , Software , Simulação por Computador , Elétrons/uso terapêutico , Humanos , Modelos Estatísticos , Método de Monte Carlo , Dosagem Radioterapêutica , Eficiência Biológica Relativa
17.
Med Phys ; 35(12): 5360-5, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19175095

RESUMO

A ring-shaped Fricke device was developed to measure the absolute dose on the transverse bisector of a 192Ir high dose rate (HDR) source at 1 cm from its center in water, D(r0, theta0). It consists of a polymethylmethacrylate (PMMA) rod (axial axis) with a cylindrical cavity at its center to insert the 192Ir radioactive source. A ring cavity around the source with 1.5 mm thickness and 5 mm height is centered at 1 cm from the central axis of the source. This ring cavity is etched in a disk shaped base with 2.65 cm diameter and 0.90 cm thickness. The cavity has a wall around it 0.25 cm thick. This ring is filled with Fricke solution, sealed, and the whole assembly is immersed in water during irradiations. The device takes advantage of the cylindrical geometry to measure D(r0, theta0). Irradiations were performed with a Nucletron microselectron HDR unit loaded with an 192Ir Alpha Omega radioactive source. A Spectronic 1001 spectrophotometer was used to measure the optical absorbance using a 1 mL quartz cuvette with 1.00 cm light pathlength. The PENELOPE Monte Carlo code (MC) was utilized to simulate the Fricke device and the 192Ir Alpha Omega source in detail to calculate the perturbation introduced by the PMMA material. A NIST traceable calibrated well type ionization chamber was used to determine the air-kerma strength, and a published dose-rate constant was used to determine the dose rate at the reference point. The time to deliver 30.00 Gy to the reference point was calculated. This absorbed dose was then compared to the absorbed dose measured by the Fricke solution. Based on MC simulation, the PMMA of the Fricke device increases the D(r0, theta0) by 2.0%. Applying the corresponding correction factor, the D(r0, theta0) value assessed with the Fricke device agrees within 2.0% with the expected value with a total combined uncertainty of 3.43% (k=1). The Fricke device provides a promising method towards calibration of brachytherapy radiation sources in terms of D(r0, theta0) and audit HDR source calibrations.


Assuntos
Braquiterapia/métodos , Compostos Ferrosos , Radioisótopos de Irídio/uso terapêutico , Radioterapia (Especialidade)/métodos , Soluções , Calibragem , Simulação por Computador , Desenho de Equipamento , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Espalhamento de Radiação , Espectrofotometria/métodos , Água
18.
Phys Med Biol ; 51(14): 3533-48, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16825747

RESUMO

The stability of the electron transport algorithm implemented in the Monte Carlo code PENELOPE with respect to variations of its step length is analysed in the context of the simulation of ion chambers used in photon and electron dosimetry. More precisely, the degree of violation of the Fano theorem is quantified (to the 0.1% level) as a function of the simulation parameters that determine the step size. To meet the premises of the theorem, we define an infinite graphite phantom with a cavity delimited by two parallel planes (i.e., a slab) and filled with a 'gas' that has the same composition as graphite but a mass density a thousand-fold smaller. The cavity walls and the gas have identical cross sections, including the density effect associated with inelastic collisions. Electrons with initial kinetic energies equal to 0.01, 0.1, 1, 10 or 20 MeV are generated in the wall and in the gas with a uniform intensity per unit mass. Two configurations, motivated by the design of pancake- and thimble-type chambers, are considered, namely, with the initial direction of emission perpendicular or parallel to the gas-wall interface. This version of the Fano test avoids the need of photon regeneration and the calculation of photon energy absorption coefficients, two ingredients that are common to some alternative definitions of equivalent tests. In order to reduce the number of variables in the analysis, a global new simulation parameter, called the speedup parameter (a), is introduced. It is shown that setting a = 0.2, corresponding to values of the usual PENELOPE parameters of C1 = C2 = 0.02 and values of WCC and WCR that depend on the initial and absorption energies, is appropriate for maximum tolerances of the order of 0.2% with respect to an analogue, i.e., interaction-by-interaction, simulation of the same problem. The precise values of WCC and WCR do not seem to be critical to achieve this level of accuracy. The step-size dependence of the absorbed dose is explained in the light of the properties of PENELOPE's transport mechanics. This work is intended to help users to adopt an optimal configuration that guarantees both a high-accuracy calculation of the absorbed dose and a reasonably short computing time.


Assuntos
Radioterapia de Alta Energia/métodos , Software , Algoritmos , Simulação por Computador , Transporte de Elétrons , Elétrons , Humanos , Íons , Cinética , Aceleradores de Partículas , Fótons , Probabilidade , Radiometria/instrumentação
19.
Phys Med Biol ; 49(14): 3125-36, 2004 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-15357186

RESUMO

The iterative reconstruction algorithms employed in brain single-photon emission computed tomography (SPECT) allow some quantitative parameters of the image to be improved. These algorithms require accurate modelling of the so-called point spread function (PSF). Nowadays, most in vivo neurotransmitter SPECT studies employ pharmaceuticals radiolabelled with 123I. In addition to an intense line at 159 keV, the decay scheme of this radioisotope includes some higher energy gammas which may have a non-negligible contribution to the PSF. The aim of this work is to study this contribution for two low-energy high-resolution collimator configurations, namely, the parallel and the fan beam. The transport of radiation through the material system is simulated with the Monte Carlo code PENELOPE. We have developed a main program that deals with the intricacies associated with tracking photon trajectories through the geometry of the collimator and detection systems. The simulated PSFs are partly validated with a set of experimental measurements that use the 511 keV annihilation photons emitted by a 18F source. Sensitivity and spatial resolution have been studied, showing that a significant fraction of the detection events in the energy window centred at 159 keV (up to approximately 49% for the parallel collimator) are originated by higher energy gamma rays, which contribute to the spatial profile of the PSF mostly outside the 'geometrical' region dominated by the low-energy photons. Therefore, these high-energy counts are to be considered as noise, a fact that should be taken into account when modelling PSFs for reconstruction algorithms. We also show that the fan beam collimator gives higher signal-to-noise ratios than the parallel collimator for all the source positions analysed.


Assuntos
Radioisótopos do Iodo/farmacologia , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Radioisótopos de Flúor , Câmaras gama , Raios gama , Humanos , Modelos Teóricos , Método de Monte Carlo , Neurotransmissores/metabolismo , Imagens de Fantasmas , Fótons , Espalhamento de Radiação , Sensibilidade e Especificidade , Software , Estatística como Assunto , Fatores de Tempo
20.
Phys Med Biol ; 46(4): 1163-86, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11324958

RESUMO

The Monte Carlo code PENELOPE has been used to simulate electron beams from a Siemens Mevatron KDS linac with nominal energies of 6, 12 and 18 MeV. Owing to its accuracy, which stems from that of the underlying physical interaction models, PENELOPE is suitable for simulating problems of interest to the medical physics community. It includes a geometry package that allows the definition of complex quadric geometries, such as those of irradiation instruments, in a straightforward manner. Dose distributions in water simulated with PENELOPE agree well with experimental measurements using a silicon detector and a monitoring ionization chamber. Insertion of a lead slab in the incident beam at the surface of the water phantom produces sharp variations in the dose distributions, which are correctly reproduced by the simulation code. Results from PENELOPE are also compared with those of equivalent simulations with the EGS4-based user codes BEAM and DOSXYZ. Angular and energy distributions of electrons and photons in the phase-space plane (at the downstream end of the applicator) obtained from both simulation codes are similar, although significant differences do appear in some cases. These differences, however, are shown to have a negligible effect on the calculated dose distributions. Various practical aspects of the simulations, such as the calculation of statistical uncertainties and the effect of the 'latent' variance in the phase-space file, are discussed in detail.


Assuntos
Elétrons , Método de Monte Carlo , Aceleradores de Partículas , Relação Dose-Resposta à Radiação , Modelos Estatísticos , Imagens de Fantasmas , Radiometria/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...