Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Math Biosci ; 372: 109201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636925

RESUMO

We investigated a system of ordinary differential equations that describes the dynamics of prey and predator populations, taking into account the Allee effect affecting the reproduction of the predator population, and mutual interference amongst predators, which is modeled with the Bazykin-Crowley-Martin (BCM) trophic function. Bifurcation analysis revealed a rich spectrum of bifurcations occurring in the system. In particular, analytical conditions for the saddle-node, Hopf, cusp, and Bogdanov-Takens bifurcations were derived for the model parameters, quantifying the strength of the predator interference, the Allee effect, and the predation efficiency. Numerical simulations verify and illustrate the analytical findings. The main purpose of the study was to test whether the mutual interference in the model with BCM trophic function provides a stabilizing or destabilizing effect on the system dynamics. The obtained results suggest that the model demonstrates qualitatively the same pattern concerning varying the interference strength as other predator-dependent models: both low and very high interference levels increase the risk of predator extinction, while moderate interference has a favorable effect on the stability and resilience of the prey-predator system.


Assuntos
Cadeia Alimentar , Modelos Biológicos , Comportamento Predatório , Animais , Comportamento Predatório/fisiologia , Dinâmica Populacional
2.
J Biosci ; 472022.
Artigo em Inglês | MEDLINE | ID: mdl-36210731

RESUMO

We considered the dynamics of two coupled three-species population patches by incorporating the Allee effect and focused on the onset of extreme events in the coupled system. First, we showed that the interplay between coupling and the Allee effect may change the nature of the dynamics, with regular periodic dynamics becoming chaotic in a range of Allee parameters and coupling strengths. Further, the growth in the vegetation population displays an explosive blow-up beyond a critical value of the coupling strength and Allee parameter. Most interestingly, we observed that beyond a threshold of the Allee parameter and coupling strength, the population densities of all three species exhibit a non-zero probability of yielding extreme events. The emergence of extreme events in the predator populations in the patches is the most prevalent, and the probability of obtaining large deviations in the predator populations is not affected significantly by either the coupling strength or the Allee effect. In the absence of the Allee effect, the prey population in the coupled system exhibits no extreme events for low coupling strengths, but yields a sharp increase in extreme events after a critical value of the coupling strength. The vegetation population in the patches displays a small finite probability of extreme events for strong enough coupling, only in the presence of the Allee effect. Last, we considered the influence of additive noise on the continued prevalence of extreme events. Very significantly, we found that noise suppresses the unbounded vegetation growth that was induced by a combination of the Allee effect and coupling. Further, we demonstrated that noise mitigates extreme events in all three populations, and beyond a noise level, we do not observe any extreme events in the system. This finding has important bearings on the potential observability of extreme events in natural and laboratory systems.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Ecossistema , Modelos Biológicos , Densidade Demográfica , Dinâmica Populacional
3.
J Math Biol ; 84(1-2): 7, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34970714

RESUMO

The use of predator-prey models in theoretical ecology has a long history, and the model equations have largely evolved since the original Lotka-Volterra system towards more realistic descriptions of the processes of predation, reproduction and mortality. One important aspect is the recognition of the fact that the growth of a population can be subject to an Allee effect, where the per capita growth rate increases with the population density. Including an Allee effect has been shown to fundamentally change predator-prey dynamics and strongly impact species persistence, but previous studies mostly focused on scenarios of an Allee effect in the prey population. Here we explore a predator-prey model with an ecologically important case of the Allee effect in the predator population where it occurs in the numerical response of predator without affecting its functional response. Biologically, this can result from various scenarios such as a lack of mating partners, sperm limitation and cooperative breeding mechanisms, among others. Unlike previous studies, we consider here a generic mathematical formulation of the Allee effect without specifying a concrete parameterisation of the functional form, and analyse the possible local bifurcations in the system. Further, we explore the global bifurcation structure of the model and its possible dynamical regimes for three different concrete parameterisations of the Allee effect. The model possesses a complex bifurcation structure: there can be multiple coexistence states including two stable limit cycles. Inclusion of the Allee effect in the predator generally has a destabilising effect on the coexistence equilibrium. We also show that regardless of the parametrisation of the Allee effect, enrichment of the environment will eventually result in extinction of the predator population.


Assuntos
Cadeia Alimentar , Modelos Biológicos , Animais , Ecossistema , Densidade Demográfica , Dinâmica Populacional , Comportamento Predatório
4.
Sci Rep ; 11(1): 20913, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686706

RESUMO

We consider the dynamics of a three-species system incorporating the Allee Effect, focussing on its influence on the emergence of extreme events in the system. First we find that under Allee effect the regular periodic dynamics changes to chaotic. Further, we find that the system exhibits unbounded growth in the vegetation population after a critical value of the Allee parameter. The most significant finding is the observation of a critical Allee parameter beyond which the probability of obtaining extreme events becomes non-zero for all three population densities. Though the emergence of extreme events in the predator population is not affected much by the Allee effect, the prey population shows a sharp increase in the probability of obtaining extreme events after a threshold value of the Allee parameter, and the vegetation population also yields extreme events for sufficiently strong Allee effect. Lastly we consider the influence of additive noise on extreme events. First, we find that noise tames the unbounded vegetation growth induced by Allee effect. More interestingly, we demonstrate that stochasticity drastically diminishes the probability of extreme events in all three populations. In fact for sufficiently high noise, we do not observe any more extreme events in the system. This suggests that noise can mitigate extreme events, and has potentially important bearing on the observability of extreme events in naturally occurring systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...