Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1369408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835661

RESUMO

Introduction: Chronic hyperglycemia-induced oxidative stress plays a crucial role in the development of diabetic nephropathy (DN). Moreover, adverse extracellular matrix (ECM) accumulation elevates renal resistive index leading to progressive worsening of the pathology in DN. Nimbidiol is an alpha-glucosidase inhibitor, isolated from the medicinal plant, 'neem' (Azadirachta indica) and reported as a promising anti-diabetic compound. Previously, a myriad of studies demonstrated an anti-oxidative property of a broad-spectrum neem-extracts in various diseases including diabetes. Our recent study has shown that Nimbidiol protects diabetic mice from fibrotic renal dysfunction in part by mitigating adverse ECM accumulation. However, the precise mechanism remains poorly understood. Methods: The present study aimed to investigate whether Nimbidiol ameliorates renal injury by reducing oxidative stress in type-1 diabetes. To test the hypothesis, wild-type (C57BL/6J) and diabetic Akita (C57BL/6-Ins2Akita/J) mice aged 10-14 weeks were used to treat with saline or Nimbidiol (400 µg kg-1 day-1) for 8 weeks. Results: Diabetic mice showed elevated blood pressure, increased renal resistive index, and decreased renal vasculature compared to wild-type control. In diabetic kidney, reactive oxygen species and the expression levels of 4HNE, p22phox, Nox4, and ROMO1 were increased while GSH: GSSG, and the expression levels of SOD-1, SOD-2, and catalase were decreased. Further, eNOS, ACE2, Sirt1 and IL-10 were found to be downregulated while iNOS and IL-17 were upregulated in diabetic kidney. The changes were accompanied by elevated expression of the renal injury markers viz., lipocalin-2 and KIM-1 in diabetic kidney. Moreover, an upregulation of p-NF-κB and a downregulation of IkBα were observed in diabetic kidney compared to the control. Nimbidiol ameliorated these pathological changes in diabetic mice. Conclusion: Altogether, the data of our study suggest that oxidative stress largely contributes to the diabetic renal injury, and Nimbidiol mitigates redox imbalance and thereby protects kidney in part by inhibiting NF-κB signaling pathway in type-1 diabetes.

2.
Mol Cell Biochem ; 479(4): 825-829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37198322

RESUMO

One in 700 children is born with the down syndrome (DS). In DS, there is an extra copy of X chromosome 21 (trisomy). Interestingly, the chromosome 21 also contains an extra copy of the cystathionine beta synthase (CBS) gene. The CBS activity is known to contribute in mitochondrial sulfur metabolism via trans-sulfuration pathway. We hypothesize that due to an extra copy of the CBS gene there is hyper trans-sulfuration in DS. We believe that understanding the mechanism of hyper trans-sulfuration during DS will be important in improving the quality of DS patients and towards developing new treatment strategies. We know that folic acid "1-carbon" metabolism (FOCM) cycle transfers the "1-carbon" methyl group to DNA (H3K4) via conversion of s-adenosyl methionine (SAM) to s-adenosyl homocysteine (SAH) by DNMTs (the gene writers). The demethylation reaction is carried out by ten-eleven translocation methylcytosine dioxygenases (TETs; the gene erasers) through epigenetics thus turning the genes off/on and opening the chromatin by altering the acetylation/HDAC ratio. The S-adenosyl homocysteine hydrolase (SAHH) hydrolyzes SAH to homocysteine (Hcy) and adenosine. The Hcy is converted to cystathionine, cysteine and hydrogen sulfide (H2S) via CBS/cystathioneγ lyase (CSE)/3-mercaptopyruvate sulfurtransferase (3MST) pathways. Adenosine by deaminase is converted to inosine and then to uric acid. All these molecules remain high in DS patients. H2S is a potent inhibitor of mitochondrial complexes I-IV, and regulated by UCP1. Therefore, decreased UCP1 levels and ATP production can ensue in DS subjects. Interestingly, children born with DS show elevated levels of CBS/CSE/3MST/Superoxide dismutase (SOD)/cystathionine/cysteine/H2S. We opine that increased levels of epigenetic gene writers (DNMTs) and decreased in gene erasers (TETs) activity cause folic acid exhaustion, leading to an increase in trans-sulphuration by CBS/CSE/3MST/SOD pathways. Thus, it is important to determine whether SIRT3 (inhibitor of HDAC3) can decrease the trans-sulfuration activity in DS patients. Since there is an increase in H3K4 and HDAC3 via epigenetics in DS, we propose that sirtuin-3 (Sirt3) may decrease H3K4 and HDAC3 and hence may be able to decrease the trans-sulfuration in DS. It would be worth to determine whether the lactobacillus, a folic acid producing probiotic, mitigates hyper-trans-sulphuration pathway in DS subjects. Further, as we know that in DS patients the folic acid is exhausted due to increase in CBS, Hcy and re-methylation. In this context, we suggest that folic acid producing probiotics such as lactobacillus might be able to improve re-methylation process and hence may help decrease the trans-sulfuration pathway in the DS patients.


Assuntos
Síndrome de Down , Sulfeto de Hidrogênio , Nefropatias , Sirtuína 3 , Criança , Humanos , Cistationina/genética , Cistationina/metabolismo , Síndrome de Down/genética , Trissomia , Cisteína , Sirtuína 3/genética , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Sulfeto de Hidrogênio/metabolismo , S-Adenosilmetionina , Superóxido Dismutase/metabolismo , Adenosina , Nefropatias/metabolismo , Ácido Fólico , Homocisteína , Carbono , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo
3.
Can J Physiol Pharmacol ; 102(2): 105-115, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979203

RESUMO

Previous studies from our laboratory revealed that the gaseous molecule hydrogen sulfide (H2S), a metabolic product of epigenetics, involves trans-sulfuration pathway for ensuring metabolism and clearance of homocysteine (Hcy) from body, thereby mitigating the skeletal muscle's pathological remodeling. Although the master circadian clock regulator that is known as brain and muscle aryl hydrocarbon receptor nuclear translocator like protein 1 (i.e., BMAL 1) is associated with S-adenosylhomocysteine hydrolase (SAHH) and Hcy metabolism but how trans-sulfuration pathway is influenced by the circadian clock remains unexplored. We hypothesize that alterations in the functioning of circadian clock during sleep and wake cycle affect skeletal muscle's biology. To test this hypothesis, we measured serum matrix metalloproteinase (MMP) activities using gelatin gels for analyzing the MMP-2 and MMP-9. Further, employing casein gels, we also studied MMP-13 that is known to be influenced by the growth arrest and DNA damage-45 (GADD45) protein during sleep and wake cycle. The wild type and cystathionine ß synthase-deficient (CBS-/+) mice strains were treated with H2S and subjected to measurement of trans-sulfuration factors from skeletal muscle tissues. The results suggested highly robust activation of MMPs in the wake mice versus sleep mice, which appears somewhat akin to the "1-carbon metabolic dysregulation", which takes place during remodeling of extracellular matrix during muscular dystrophy. Interestingly, the levels of trans-sulfuration factors such as CBS, cystathionine γ lyase (CSE), methyl tetrahydrofolate reductase (MTHFR), phosphatidylethanolamine N-methyltransferase (PEMT), and Hcy-protein bound paraoxonase 1 (PON1) were attenuated in CBS-/+ mice. However, treatment with H2S mitigated the attenuation of the trans-sulfuration pathway. In addition, levels of mitochondrial peroxisome proliferator-activated receptor-gamma coactivator 1-α (PGC 1-α) and mitofusin-2 (MFN-2) were significantly improved by H2S intervention. Our findings suggest participation of the circadian clock in trans-sulfuration pathway that affects skeletal muscle remodeling and mitochondrial regeneration.


Assuntos
Relógios Circadianos , Sulfeto de Hidrogênio , Animais , Camundongos , Sulfeto de Hidrogênio/metabolismo , Cistationina beta-Sintase , Músculo Esquelético/metabolismo , Géis , Cistationina gama-Liase/metabolismo , Fosfatidiletanolamina N-Metiltransferase
4.
Antioxidants (Basel) ; 12(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37237955

RESUMO

Diabetic nephropathy (DN) remains the leading cause of vascular morbidity and mortality in diabetes patients. Despite the progress in understanding the diabetic disease process and advanced management of nephropathy, a number of patients still progress to end-stage renal disease (ESRD). The underlying mechanism still needs to be clarified. Gaseous signaling molecules, so-called gasotransmitters, such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), have been shown to play an essential role in the development, progression, and ramification of DN depending on their availability and physiological actions. Although the studies on gasotransmitter regulations of DN are still emerging, the evidence revealed an aberrant level of gasotransmitters in patients with diabetes. In studies, different gasotransmitter donors have been implicated in ameliorating diabetic renal dysfunction. In this perspective, we summarized an overview of the recent advances in the physiological relevance of the gaseous molecules and their multifaceted interaction with other potential factors, such as extracellular matrix (ECM), in the severity modulation of DN. Moreover, the perspective of the present review highlights the possible therapeutic interventions of gasotransmitters in ameliorating this dreaded disease.

5.
Int J Mol Sci ; 24(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37108465

RESUMO

Renal denervation (RDN) protects against hypertension, hypertrophy, and heart failure (HF); however, it is not clear whether RDN preserves ejection fraction (EF) during heart failure (HFpEF). To test this hypothesis, we simulated a chronic congestive cardiopulmonary heart failure (CHF) phenotype by creating an aorta-vena cava fistula (AVF) in the C57BL/6J wild type (WT) mice. Briefly, there are four ways to create an experimental CHF: (1) myocardial infarction (MI), which is basically ligating the coronary artery by instrumenting and injuring the heart; (2) trans-aortic constriction (TAC) method, which mimics the systematic hypertension, but again constricts the aorta on top of the heart and, in fact, exposes the heart; (3) acquired CHF condition, promoted by dietary factors, diabetes, salt, diet, etc., but is multifactorial in nature; and finally, (4) the AVF, which remains the only one wherein AVF is created ~1 cm below the kidneys in which the aorta and vena cava share the common middle-wall. By creating the AVF fistula, the red blood contents enter the vena cava without an injury to the cardiac tissue. This model mimics or simulates the CHF phenotype, for example, during aging wherein with advancing age, the preload volume keeps increasing beyond the level that the aging heart can pump out due to the weakened cardiac myocytes. Furthermore, this procedure also involves the right ventricle to lung to left ventricle flow, thus creating an ideal condition for congestion. The heart in AVF transitions from preserved to reduced EF (i.e., HFpEF to HFrEF). In fact, there are more models of volume overload, such as the pacing-induced and mitral valve regurgitation, but these are also injurious models in nature. Our laboratory is one of the first laboratories to create and study the AVF phenotype in the animals. The RDN was created by treating the cleaned bilateral renal artery. After 6 weeks, blood, heart, and renal samples were analyzed for exosome, cardiac regeneration markers, and the renal cortex proteinases. Cardiac function was analyzed by echocardiogram (ECHO) procedure. The fibrosis was analyzed with a trichrome staining method. The results suggested that there was a robust increase in the exosomes' level in AVF blood, suggesting a compensatory systemic response during AVF-CHF. During AVF, there was no change in the cardiac eNOS, Wnt1, or ß-catenin; however, during RDN, there were robust increases in the levels of eNOS, Wnt1, and ß-catenin compared to the sham group. As expected in HFpEF, there was perivascular fibrosis, hypertrophy, and pEF. Interestingly, increased levels of eNOS suggested that despite fibrosis, the NO generation was higher and that it most likely contributed to pEF during HF. The RDN intervention revealed an increase in renal cortical caspase 8 and a decrease in caspase 9. Since caspase 8 is protective and caspase 9 is apoptotic, we suggest that RDN protects against the renal stress and apoptosis. It should be noted that others have demonstrated a role of vascular endothelium in preserving the ejection by cell therapy intervention. In the light of foregoing evidence, our findings also suggest that RDN is cardioprotective during HFpEF via preservation of the eNOS and accompanied endocardial-endothelial function.


Assuntos
Insuficiência Cardíaca , Hipertensão , Camundongos , Animais , Caspase 8 , Caspase 9 , beta Catenina , Volume Sistólico , Camundongos Endogâmicos C57BL , Rim/patologia , Miócitos Cardíacos/patologia , Hipertensão/patologia , Denervação , Hipertrofia/patologia , Fibrose
6.
Sci Rep ; 12(1): 21707, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522378

RESUMO

Diabetic nephropathy is characterized by excessive accumulation of extracellular matrix (ECM) leading to renal fibrosis, progressive deterioration of renal function, and eventually to end stage renal disease. Matrix metalloproteinases (MMPs) are known to regulate synthesis and degradation of the ECM. Earlier, we demonstrated that imbalanced MMPs promote adverse ECM remodeling leading to renal fibrosis in type-1 diabetes. Moreover, elevated macrophage infiltration, pro-inflammatory cytokines and epithelial‒mesenchymal transition (EMT) are known to contribute to the renal fibrosis. Various bioactive compounds derived from the medicinal plant, Azadirachta indica (neem) are shown to regulate inflammation and ECM proteins in different diseases. Nimbidiol is a neem-derived diterpenoid that is considered as a potential anti-diabetic compound due to its glucosidase inhibitory properties. We investigated whether Nimbidiol mitigates adverse ECM accumulation and renal fibrosis to improve kidney function in type-1 diabetes and the underlying mechanism. Wild-type (C57BL/6J) and type-1 diabetic (C57BL/6-Ins2Akita/J) mice were treated either with saline or with Nimbidiol (0.40 mg kg-1 d-1) for eight weeks. Diabetic kidney showed increased accumulation of M1 macrophages, elevated pro-inflammatory cytokines and EMT. In addition, upregulated MMP-9 and MMP-13, excessive collagen deposition in the glomerular and tubulointerstitial regions, and degradation of vascular elastin resulted to renal fibrosis in the Akita mice. These pathological changes in the diabetic mice were associated with functional impairments that include elevated resistive index and reduced blood flow in the renal cortex, and decreased glomerular filtration rate. Furthermore, TGF-ß1, p-Smad2/3, p-P38, p-ERK1/2 and p-JNK were upregulated in diabetic kidney compared to WT mice. Treatment with Nimbidiol reversed the changes to alleviate inflammation, ECM accumulation and fibrosis and thus, improved renal function in Akita mice. Together, our results suggest that Nimbidiol attenuates inflammation and ECM accumulation and thereby, protects kidney from fibrosis and dysfunction possibly by inhibiting TGF-ß/Smad and MAPK signaling pathways in type-1 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Diterpenos , Camundongos , Animais , Nefropatias Diabéticas/patologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Camundongos Endogâmicos C57BL , Fibrose , Fator de Crescimento Transformador beta1/metabolismo , Rim/metabolismo , Diterpenos/metabolismo , Inflamação/patologia , Glucosidases
7.
Pharmacol Res ; 175: 106030, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896544

RESUMO

Cellular autophagy is a protective mechanism where cells degrade damaged organelles to maintain intracellular homeostasis. Apoptosis, on the other hand, is considered as programmed cell death. Interestingly, autophagy inhibits apoptosis by degrading apoptosis regulators. In hypertension, an imbalance of autophagy and apoptosis regulators can lead to renal injury and dysfunction. Previously, we have reported that toll-like receptor 4 (TLR4) mutant mice are protective against renal damage, in part, due to reduced oxidative stress and inflammation. However, the detailed mechanism remained elusive. In this study, we tested the hypothesis of whether TLR4 mutation reduces Ang-II-induced renal injury by inciting autophagy and suppressing apoptosis in the hypertensive kidney. Male mice with normal TLR4 expression (TLR4N, C3H/HeOuJ) and mutant TLR4 (TLR4M, C3H/HeJLps-d) aged 10-12 weeks were infused with Ang-II (1000 ng/kg/d) for 4 weeks to create hypertension. Saline infused appropriate control were used. Blood pressure was increased along with increased TLR4 expression in TLR4N mice receiving Ang-II compared to TLR4N control. Autophagy was downregulated, and apoptosis was upregulated in TLR4N mice treated with Ang-II. Also, kidney injury markers plasma lipocalin-2 (LCN2) and kidney injury molecule 1 (KIM-1) were upregulated in TLR4N mice treated with Ang-II. Besides, increased nuclear translocation and activity of NF-kB were measured in Ang-II-treated TLR4N mice. TLR4M mice remained protected against all these insults in hypertension. Together, these results suggest that Ang-II-induced TLR4 activation suppresses autophagy, induces apoptosis and kidney injury through in part by activating NF-kB signaling, and TLR4 mutation protects the kidney from Ang-II-induced hypertensive injury.


Assuntos
Angiotensina II , Hipertensão/complicações , Nefropatias/prevenção & controle , Receptor 4 Toll-Like/genética , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Rim/metabolismo , Nefropatias/etiologia , Masculino , Camundongos Endogâmicos C3H , Camundongos Mutantes , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
8.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613731

RESUMO

Although progressive wasting and weakness of respiratory muscles are the prominent hallmarks of Duchenne muscular dystrophy (DMD) and long-COVID (also referred as the post-acute sequelae of COVID-19 syndrome); however, the underlying mechanism(s) leading to respiratory failure in both conditions remain unclear. We put together the latest relevant literature to further understand the plausible mechanism(s) behind diaphragm malfunctioning in COVID-19 and DMD conditions. Previously, we have shown the role of matrix metalloproteinase-9 (MMP9) in skeletal muscle fibrosis via a substantial increase in the levels of tumor necrosis factor-α (TNF-α) employing a DMD mouse model that was crossed-bred with MMP9-knockout (MMP9-KO or MMP9-/-) strain. Interestingly, recent observations from clinical studies show a robust increase in neopterin (NPT) levels during COVID-19 which is often observed in patients having DMD. What seems to be common in both (DMD and COVID-19) is the involvement of neopterin (NPT). We know that NPT is generated by activated white blood cells (WBCs) especially the M1 macrophages in response to inducible nitric oxide synthase (iNOS), tetrahydrobiopterin (BH4), and tetrahydrofolate (FH4) pathways, i.e., folate one-carbon metabolism (FOCM) in conjunction with epigenetics underpinning as an immune surveillance protection. Studies from our laboratory, and others researching DMD and the genetically engineered humanized (hACE2) mice that were administered with the spike protein (SP) of SARS-CoV-2 revealed an increase in the levels of NPT, TNF-α, HDAC, IL-1ß, CD147, and MMP9 in the lung tissue of the animals that were subsequently accompanied by fibrosis of the diaphragm depicting a decreased oscillation phenotype. Therefore, it is of interest to understand how regulatory processes such as epigenetics involvement affect DNMT, HDAC, MTHFS, and iNOS that help generate NPT in the long-COVID patients.


Assuntos
COVID-19 , Distrofia Muscular de Duchenne , Animais , Humanos , Camundongos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos mdx , Fator de Necrose Tumoral alfa/metabolismo , Síndrome de COVID-19 Pós-Aguda , Neopterina/metabolismo , COVID-19/patologia , SARS-CoV-2 , Distrofia Muscular de Duchenne/genética , Fibrose , Músculo Esquelético/metabolismo , Modelos Animais de Doenças
9.
Biomolecules ; 11(10)2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34680110

RESUMO

Diabetic kidney is associated with an accumulation of extracellular matrix (ECM) leading to renal fibrosis. Dysregulation of retinoic acid metabolism involving retinoic acid receptors (RARs) and retinoid X receptors (RXRs) has been shown to play a crucial role in diabetic nephropathy (DN). Furthermore, RARs and peroxisome proliferator-activated receptor γ (PPARγ) are known to control the RXR-mediated transcriptional regulation of several target genes involved in DN. Recently, RAR and RXR have been shown to upregulate plasminogen activator inhibitor-1 (PAI-1), a major player involved in ECM accumulation and renal fibrosis during DN. Interestingly, hydrogen sulfide (H2S) has been shown to ameliorate adverse renal remodeling in DN. We investigated the role of RXR signaling in the ECM turnover in diabetic kidney, and whether H2S can mitigate ECM accumulation by modulating PPAR/RAR-mediated RXR signaling. We used wild-type (C57BL/6J), diabetic (C57BL/6-Ins2Akita/J) mice and mouse mesangial cells (MCs) as experimental models. GYY4137 was used as a H2S donor. Results showed that in diabetic kidney, the expression of PPARγ was decreased, whereas upregulations of RXRα, RXRß, and RARγ1 expression were observed. The changes were associated with elevated PAI-1, MMP-9 and MMP-13. In addition, the expressions of collagen IV, fibronectin and laminin were increased, whereas elastin expression was decreased in the diabetic kidney. Excessive collagen deposition was observed predominantly in the peri-glomerular and glomerular regions of the diabetic kidney. Immunohistochemical localization revealed elevated expression of fibronectin and laminin in the glomeruli of the diabetic kidney. GYY4137 reversed the pathological changes. Similar results were observed in in vitro experiments. In conclusion, our data suggest that RXR signaling plays a significant role in ECM turnover, and GYY4137 modulates PPAR/RAR-mediated RXR signaling to ameliorate PAI-1-dependent adverse ECM turnover in DN.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , PPAR gama/genética , Inibidor 1 de Ativador de Plasminogênio/genética , Receptores X de Retinoides/genética , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Matriz Extracelular/efeitos dos fármacos , Fibrose/tratamento farmacológico , Fibrose/genética , Fibrose/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Sulfeto de Hidrogênio/farmacologia , Rim/efeitos dos fármacos , Rim/patologia , Camundongos , Camundongos Endogâmicos NOD , Morfolinas/farmacologia , Compostos Organotiofosforados/farmacologia , Receptores do Ácido Retinoico/antagonistas & inibidores , Receptores do Ácido Retinoico/genética , Receptores X de Retinoides/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Tretinoína/metabolismo
10.
Geroscience ; 43(3): 1349-1367, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33433751

RESUMO

Ischemia reperfusion injury (IRI) is a common cause of acute kidney injury (AKI) in the aging population. A reduction of hydrogen sulfide (H2S) production in the old kidney and renal IRI contribute to renal pathology and injury. Recent studies suggest that microRNAs (miRs) play an important role in the pathophysiology of AKI and a significant crosstalk exists between H2S and miRs. Among the miRs, miR-21 is highly expressed in AKI and is reported to have both pathological and protective role. In the present study, we sought to determine the effects of age-induced reduction in H2S and mir-21 antagonism in AKI. Wild type (WT, C57BL/6J) mice aged 12-14 weeks and 75-78 weeks underwent bilateral renal ischemia (27 min) and reperfusion for 7 days and were treated with H2S donor, GYY4137 (GYY, 0.25 mg/kg/day, ip) or locked nucleic acid anti-miR-21 (20 mg/kg b.w., ip) for 7 days. Following IRI, old kidney showed increased macrophage polarization toward M1 inflammatory phenotype, cytokine upregulation, endothelial-mesenchymal transition, and fibrosis compared to young kidney. Treatment with GYY or anti-miR-21 reversed the changes and improved renal vascular density, blood flow, and renal function in the old kidney. Anti-miR-21 treatment in mouse glomerular endothelial cells showed upregulation of H2S-producing enzymes, cystathionine ß-synthase (CBS), and cystathionineγ-lyase (CSE), and reduction of matrix metalloproteinase-9 and collagen IV expression. In conclusion, exogenous H2S and inhibition of miR-21 rescued the old kidney dysfunction due to IRI by increasing H2S levels, reduction of macrophage-mediated injury, and promoting reparative process suggesting a viable approach for aged patients sustaining AKI.


Assuntos
Sulfeto de Hidrogênio , Inflamação , Rim , Macrófagos , MicroRNAs , Traumatismo por Reperfusão , Animais , Cistationina gama-Liase , Células Endoteliais , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética
11.
Redox Biol ; 37: 101754, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33080442

RESUMO

The prevalence of hypertension increases with age, and oxidative stress is a major contributing factor to the pathogenesis of hypertension-induced kidney damage in aging. The nicotinamide adenine dinucleotide phosphate (NADPH) family is one of the major sources of reactive oxygen species (ROS) generation, and several NADPH oxidase isoforms are highly expressed in the kidney. Although epigenetic protein modification plays a role in organ injury, the methylation of the oxidant-antioxidant defense system and their role in hypertension-induced kidney damage in aging remains underexplored. The present study investigated the role of NADPH oxidase 4, superoxide dismutases (SODs), catalase, and NOS in Ang-II induced kidney damage in aging. Wild type (WT, C57BL/6J) mice aged 12-14 and 75-78 weeks were used and treated with or without Ang-II (1000 ng/kg/min) for 4 weeks with control mice receiving saline. Aged mice with or without Ang-II exhibited higher mean BP, lower renal blood flow, and decreased renal vascular density compared to young mice. While superoxide, 4-HNE, p22phox, Nox4, iNOS were increased in the aged kidney, the expression of eNOS, MnSOD, CuSOD, catalase, Sirt1, and -3 as well as the ratio of GSH/GSSG, and activities of SODs and catalase were decreased compared to young control mice. The changes further deteriorated with Ang-II treatment. In Ang-II treated aged mice, the expressions of DNMTs were increased and associated with increased methylation of SODs, Sirt1, and Nox4. We conclude that hypermethylation of antioxidant enzymes in the aged kidney during hypertension worsens redox imbalance leading to kidney damage.


Assuntos
Antioxidantes , Hipertensão , Envelhecimento , Angiotensina II , Animais , Hipertensão/genética , Rim/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Oxirredução , Estresse Oxidativo
12.
Mol Cell Biochem ; 466(1-2): 1-15, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31912277

RESUMO

Progressive alteration of the extracellular matrix (ECM) is the characteristic of hypertensive nephropathy (HN). Both mesangial and endothelial cells have the ability to synthesize and degrade ECM components, including collagens through the activation of matrix metalloproteinases (MMPs) in stress conditions, such as in hypertension. On the other hand, hydrogen sulfide (H2S) has been shown to mitigate hypertensive renal matrix remodeling. Surprisingly, whether H2S ameliorates receptor-mediated (urokinase plasminogen activator receptor-associated protein, uPARAP/Endo180) collagen dysregulation in Ang-II hypertension is not clear. The purpose of this study was to determine whether Ang-II alters the expression of Endo180, tissue plasminogen activator (tPA), MMPs, and their tissue inhibitors (TIMPs) leading to the dysregulation of cellular collagen homeostasis and whether H2S mitigates the collagen turnover. Mouse mesangial cells (MCs) and glomerular endothelial cells (MGECs) were treated without or with Ang-II and H2S donor GYY (GYY4137) for 48 h. Cell lysates were analyzed by Western blot and RT-PCR, and cells were analyzed by immunocytochemistry. The results indicated that, while Ang-II differentially expressed MMP-13 and TIMP-1 in MCs and in MGECs, it predominantly decreased tPA, Endo 180, and increased plasminogen activator inhibitor-1 (PAI-1), MMP-14, and collagen IIIA and IV in both the cell types. Interestingly, H2S donor GYY treatment normalized the above changes in both the cell types. We conclude that Ang-II treatment causes ECM remodeling in MCs and MGECs through PAI-1/tPA/Endo180 and MMP/TIMP-dependent collagen remodeling, and H2S treatment mitigates remodeling, in part, by modulating these pathways.


Assuntos
Células Endoteliais/metabolismo , Mesângio Glomerular/metabolismo , Hipertensão Renal/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Receptores de Colágeno/metabolismo , Estresse Fisiológico , Animais , Células Endoteliais/patologia , Mesângio Glomerular/patologia , Hipertensão Renal/patologia , Camundongos
13.
Life Sci ; 243: 117226, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31904366

RESUMO

Hypertension is a risk factor for premature death and roughly 50% of hypertensive patients are salt-sensitive. The incidence of salt-sensitive hypertension increases with age. However, the mechanisms of salt-sensitive hypertension are not well understood. We had demonstrated decreased renal sodium­hydrogen exchanger regulatory factor 1 (NHERF1) expression in old salt-resistant F344 rats. Based on those studies we hypothesized that NHERF1 expression is required for the development of some forms of salt-sensitive hypertension. To address this hypothesis, we measured blood pressure in NHERF1 expressing salt-sensitive 4-mo and 24-mo-old male and female Fischer Brown Norway (FBN) rats male and female 18-mo-old NHERF1 knock-out (NHERF1-/-) mice and wild-type (WT) littermates on C57BL/6J background after feeding high salt (8% NaCl) diet for 7 days. Our data demonstrate that 8% salt diet increased blood pressure in both male and female 24-mo-old FBN rats but not in 4-mo-old FBN rats and in 18-mo-old male and female WT mice but not in NHERF1-/- mice. Renal dopamine 1 receptor (D1R) expression was decreased in 24-mo-old rats, compared with 4-mo-old FBN rats. However, sodium chloride cotransporter (NCC) expression increased in 24-mo-old FBN rats. In FBN rats, age had no effect on NaK ATPase α1 and NKCC2 expression. By contrast, high salt diet increased the renal expressions of NKCC2, and NCC in 24-mo-old FBN rats. High salt diet also increased NKCC2 and NCC expression in WT mice but not NHERF1-/- mice. Our data suggest that renal NHERF1 expression confers salt sensitivity with aging, associated with increased expression of sodium transporters.


Assuntos
Envelhecimento/metabolismo , Hipertensão/metabolismo , Fosfoproteínas/fisiologia , Cloreto de Sódio na Dieta/administração & dosagem , Trocadores de Sódio-Hidrogênio/fisiologia , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Feminino , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/genética , Ratos , Ratos Endogâmicos F344 , Trocadores de Sódio-Hidrogênio/genética
14.
Pharmacol Res ; 147: 104391, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31401210

RESUMO

PURPOSE OF THE REVIEW: This review article discusses recent advances in the mechanism of dipeptidyl peptidase-4 (DPP-4) actions in renal diseases, especially diabetic kidney fibrosis, and summarizes anti-fibrotic functions of various DPP-4 inhibitors in diabetic nephropathy (DN). RECENT FINDINGS: DN is a common complication of diabetes and is a leading cause of the end-stage renal disease (ESRD). DPP-4 is a member of serine proteases, and more than 30 substrates have been identified that act via several biochemical messengers in a variety of tissues including kidney. Intriguingly, DPP-4 actions on the diabetic kidney is a complex mechanism, and a variety of pathways are involved including increasing GLP-1/SDF-1, disrupting AGE-RAGE pathways, and integrin-ß- and TGF-ß-Smad-mediated signalling pathways that finally lead to endothelial to mesenchymal transition. Interestingly, an array of DPP-4 inhibitors is well recognized as oral drugs to treat type 2 diabetic (T2D) patients, which promote better glycemic control. Furthermore, recent experimental and preclinical data reveal that DPP-4 inhibitors may also exhibit protective effects in renal disease progression including anti-fibrotic effects in the diabetic kidney by attenuating above signalling cascade(s), either singly or as a combinatorial effect. In this review, we discussed the anti-fibrotic effects of DPP-4 inhibitors based on recent reports along with the possible mechanism of actions and future perspectives to underscore the beneficial effects of DPP-4 inhibitors in DN. SUMMARY: With recent experimental, preclinical, and clinical evidence, we summarized DPP-4 activities and its mechanism of actions in diabetic kidney diseases. A knowledge gap of DPP-4 inhibition in controlling renal fibrosis in DN has also been postulated in this review for future research perspectives.


Assuntos
Nefropatias Diabéticas/metabolismo , Dipeptidil Peptidase 4/metabolismo , Rim/metabolismo , Animais , Nefropatias Diabéticas/tratamento farmacológico , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Fibrose , Humanos , Rim/patologia
15.
Am J Physiol Endocrinol Metab ; 317(2): E269-E283, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039005

RESUMO

Hydrogen sulfide (H2S) attenuates N-methyl-d-aspartate receptor-R1 (NMDA-R1) and mitigates diabetic renal damage; however, the molecular mechanism is not well known. Whereas NMDA-R1 facilitates Ca2+ permeability, H2S is known to inhibit L-type Ca2+ channel. High Ca2+ activates cyclophilin D (CypD), a gatekeeper protein of mitochondrial permeability transition pore (MPTP), thus facilitating molecular exchange between matrix and cytoplasm causing oxidative outburst and cell death. We tested the hypothesis of whether NMDA-R1 mediates Ca2+ influx causing CypD activation and MPTP opening leading to oxidative stress and renal injury in diabetes. We also tested whether H2S treatment blocks Ca2+ channel and thus inhibits CypD and MPTP opening to prevent renal damage. C57BL/6J and Akita (C57BL/6J-Ins2Akita) mice were treated without or with H2S donor GYY4137 (0.25 mg·kg-1·day-1 ip) for 8 wk. In vitro studies were performed using mouse glomerular endothelial cells. Results indicated that low levels of H2S and increased expression of NMDA-R1 in diabetes induced Ca2+ permeability, which was ameliorated by H2S treatment. We observed cytosolic Ca2+ influx in hyperglycemic (HG) condition along with mitochondrial-CypD activation, increased MPTP opening, and oxidative outburst, which were mitigated with H2S treatment. Renal injury biomarker KIM-1 was upregulated in HG conditions and normalized following H2S treatment. Inhibition of NMDA-R1 by pharmacological blocker MK-801 revealed similar results. We conclude that NMDA-R1-mediated Ca2+ influx in diabetes induces MPTP opening via CypD activation leading to increased oxidative stress and renal injury, and H2S protects diabetic kidney from injury by blocking mitochondrial Ca2+ permeability through NMDA-R1 pathway.


Assuntos
Cálcio/farmacologia , Diabetes Mellitus Tipo 1/metabolismo , Sulfeto de Hidrogênio/farmacologia , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Animais , Células Cultivadas , Peptidil-Prolil Isomerase F/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial
16.
Cell Signal ; 61: 66-77, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31085234

RESUMO

Cellular damage and accumulation of extracellular matrix (ECM) protein in the glomerulo-interstitial space are the signatures of chronic kidney disease (CKD). Hyperhomocysteinemia (HHcy), a high level of homocysteine (Hcy) is associated with CKD and further contributes to kidney damage. Despite a large number of studies, the signalling mechanism of Hcy-mediated cellular damage and ECM remodelling in kidney remains inconclusive. Hcy metabolizes to produce hydrogen sulphide (H2S), and a number of studies have shown that H2S mitigates the adverse effect of HHcy in a variety of diseases involving several signalling molecules, including forkhead box O (FOXO) protein. FOXO is a group of transcription factor that includes FOXO1, which plays important roles in cell growth and proliferation. On the other hand, a cell survival factor, Akt regulates FOXO under normal condition. However, the involvement of Akt/FOXO1 pathway in Hcy-induced mesangial cell damage remains elusive, and whether H2S plays any protective roles has yet to be clearly defined. We treated mouse mesangial cells with or without H2S donor, GYY4137 and FOXO1 inhibitor, AS1842856 in HHcy condition and determined the involvement of Akt/FOXO1 signalling cascades. Our results indicated that Hcy inactivated Akt and activated FOXO1 by dephosphorylating both the signalling molecules and induced FOXO1 nuclear translocation followed by activation of the FOXO1 transcription factor. These led to the induction of cellular apoptosis and synthesis of excessive ECM protein, in part, due to increased ROS production, loss of mitochondrial membrane potential (ΔΨm), reduction in intracellular ATP concentration, increased MMP-2, -9, -14 mRNA and protein expression, and Col I, IV and fibronectin protein expression. Interestingly, GYY4137 or AS1842856 treatment prevented these changes by modulating Akt/FOXO1 axis in HHcy. We conclude that GYY4137 and/or AS1842856 mitigates HHcy induced mesangial cell damage and ECM remodelling by regulating Akt/FOXO1 pathway.


Assuntos
Apoptose/efeitos dos fármacos , Matriz Extracelular/metabolismo , Proteína Forkhead Box O1/metabolismo , Homocisteína/farmacologia , Sulfeto de Hidrogênio/metabolismo , Células Mesangiais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Matriz Extracelular/efeitos dos fármacos , Proteína Forkhead Box O1/antagonistas & inibidores , Hiper-Homocisteinemia/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Morfolinas/farmacologia , Compostos Organotiofosforados/farmacologia , Quinolonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Sci Rep ; 9(1): 2223, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778103

RESUMO

The accumulation of homocysteine (Hcy) during chronic kidney failure (CKD) can exert toxic effects on the glomeruli and tubulo-interstitial region. Among the potential mechanisms, the formation of highly reactive metabolite, Hcy thiolactone, is known to modify proteins by N-homocysteinylation, leading to protein degradation, stress and impaired function. Previous studies documented impaired nitric oxide production and altered caveolin expression in hyperhomocysteinemia (HHcy), leading to endothelial dysfunction. The aim of this study was to determine whether Hhcy homocysteinylates endothelial nitric oxide synthase (eNOS) and alters caveolin-1 expression to decrease nitric oxide bioavailability, causing hypertension and renal dysfunction. We also examined whether hydrogen sulfide (H2S) could dehomocysteinylate eNOS to protect the kidney. WT and Cystathionine ß-Synthase deficient (CBS+/-) mice representing HHcy were treated without or with sodium hydrogen sulfide (NaHS), a H2S donor (30 µM), in drinking water for 8 weeks. Hhcy mice (CBS+/-) showed low levels of plasma H2S, elevated systolic blood pressure (SBP) and renal dysfunction. H2S treatment reduced SBP and improved renal function. Hhcy was associated with homocysteinylation of eNOS, reduced enzyme activity and upregulation of caveolin-1 expression. Further, Hhcy increased extracellular matrix (ECM) protein deposition and disruption of gap junction proteins, connexins. H2S treatment reversed the changes above and transfection of triple genes producing H2S (CBS, CSE and 3MST) showed reduction of vascular smooth muscle cell proliferation. We conclude that during Hhcy, homocysteinylation of eNOS and disruption of caveolin-mediated regulation leads to ECM remodeling and hypertension, and H2S treatment attenuates renovascular damage.


Assuntos
Caveolinas/metabolismo , Sulfeto de Hidrogênio/metabolismo , Hiper-Homocisteinemia/complicações , Nefropatias/etiologia , Nefropatias/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Substâncias Protetoras/metabolismo , Animais , Biomarcadores , Conectina/genética , Conectina/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Expressão Gênica , Sulfeto de Hidrogênio/farmacologia , Nefropatias/diagnóstico , Nefropatias/tratamento farmacológico , Testes de Função Renal , Camundongos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Substâncias Protetoras/farmacologia , Ligação Proteica
18.
J Hypertens ; 36(11): 2226-2236, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30256768

RESUMO

OBJECTIVE: Hypertension at advanced age damages microvasculature and initiates many disease conditions including chronic kidney disease (CKD). In the present study, we sought to determine molecular alterations occurring in angiotensin-II (Ang-II)-induced aged kidney. METHODS: Old (75-80 weeks) and young (12-14 weeks) wild-type mice (C57BL/6J) were infused with Ang-II (1000 ng/kg per min) for 4 weeks using osmotic minipumps to induce hypertension. Blood pressure, renovascular density, and renal vascular resistance were measured by telemetry, barium angiography, and renal ultrasound, respectively. Molecular analysis was performed by RT-PCR, western blotting, and immunostaining. RESULTS: Aged hypertensive mice showed significant increase in blood pressure, increased resistive index, and reduced vasculature compared with young mice with Ang-II. The cytoprotective and anti-inflammatory molecule hemeoxygenase-1 (Ho-1) was found to be downregulated in the hypertensive aged mice whereas its putative regulator Bach-1 was increased. Antagonistically, an increase in inflammatory chemokine Mcp-1 was observed in the same mice group along with an increase in extracellular matrix protein, collagen. In addition, DNA damage marker γH2AX was found to be high in hypertensive kidney, especially in aged hypertensive animals along with increased miR-122. Transfection with a mimic of miR-122 into mesangial cells showed an increase of Bach-1 expression and concomitant decease in Ho-1. CONCLUSION: Our findings suggest that aged animals fail to counteract hypertensive condition resulting in upregulation of miR-122 and subsequently Bach-1, leading to decreased levels of Ho-1 and an increase in DNA damage and tissue inflammation. Together, these lead to increased collagen deposition thereby causing reduced vascular density and increased renal resistive index.


Assuntos
Envelhecimento/fisiologia , Pressão Sanguínea , Hipertensão/fisiopatologia , Rim/metabolismo , Resistência Vascular , Angiotensina II , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Quimiocina CCL2/metabolismo , Colágeno/metabolismo , Regulação para Baixo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Histonas/metabolismo , Hipertensão/induzido quimicamente , Rim/irrigação sanguínea , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs
19.
Pharmacol Res ; 134: 157-165, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29909116

RESUMO

Hypertension affects nearly one third of the adult US population and is a significant risk factor for chronic kidney disease (CKD). An expanding body of recent studies indicates that gut microbiome has crucial roles in regulating physiological processes through, among other mechanisms, one mode of short chain fatty acids (SCFA) and their target receptors. In addition, these SCFA receptors are potential targets of regulation by host miRNAs, however, the mechanisms through which this occurs is not clearly defined. Hydrogen sulfide (H2S) is an important gasotransmitter involved in multiple physiological processes and is known to alleviate adverse effects of hypertension such as reducing inflammation in the kidney. To determine the role of host microRNAs in regulating short chain fatty acid receptors in the kidney as well as the gut, C57BL/6J wild-type mice were treated with or without Ang-II and H2S donor GYY4137 (GYY) for 4 weeks to assess whether GYY would normalize adverse effects observed in hypertensive mice and whether this was in part due to altered gut microbiome composition. We observed several changes of SCFA receptors, including Olfr78, Gpr41/43 and predicted microRNA regulators in the kidney among the different treatments. Increased expression of inflammatory markers Il6 and Rorc2, along with Tgfß, were found in the hypertensive kidney. The glomerular filtration rate (GFR) was improved in mice treated with Ang-II + GYY compared with Ang-II only, indicating improved kidney function. The Erysipelotrichia class of bacteria, linked with high fat diets, was enriched in hypertensive animals but reduced with GYY supplementation. These data point towards a role for miRNA regulation of SCFA receptors in hypertensive kidney and are normalized by H2S supplementation.


Assuntos
Anti-Hipertensivos/farmacologia , Ácidos Graxos Voláteis/metabolismo , Sulfeto de Hidrogênio/farmacologia , Hipertensão/tratamento farmacológico , Rim/efeitos dos fármacos , MicroRNAs/metabolismo , Morfolinas/farmacologia , Compostos Organotiofosforados/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Anti-Hipertensivos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Disbiose , Microbioma Gastrointestinal/efeitos dos fármacos , Taxa de Filtração Glomerular/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/microbiologia , Rim/metabolismo , Rim/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Morfolinas/metabolismo , Compostos Organotiofosforados/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos
20.
Sci Rep ; 7(1): 10924, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883608

RESUMO

The relationship between hydrogen sulfide (H2S), microRNAs (miRs), matrix metalloproteinases (MMPs) and poly-ADP-ribose-polymerase-1 (PARP-1) in diabetic kidney remodeling remains mostly obscured. We aimed at investigating whether alteration of miR-194-dependent MMPs and PARP-1 causes renal fibrosis in diabetes kidney, and whether H2S ameliorates fibrosis. Wild type, diabetic Akita mice as well as mouse glomerular endothelial cells (MGECs) were used as experimental models, and GYY4137 as H2S donor. In diabetic mice, plasma H2S levels were decreased while ROS and expression of its modulator (ROMO1) were increased. In addition, alteration of MMPs-9, -13 and -14 expression, PARP-1, HIF1α, and increased collagen biosynthesis as well as collagen cross-linking protein, P4HA1 and PLOD2 were observed along with diminished vascular density in diabetic kidney. These changes were ameliorated by GYY4137. Further, downregulated miRNA-194 was normalized by GYY4137 in diabetic kidney. Similar results were obtained in in vitro condition. Interestingly, miR-194 mimic also diminished ROS production, and normalized ROMO1, MMPs-9, -13 and -14, and PARP-1 along with collagen biosynthesis and cross-linking protein in HG condition. We conclude that decrease H2S diminishes miR-194, induces collagen deposition and realignment leading to fibrosis and renovascular constriction in diabetes. GYY4137 mitigates renal fibrosis in diabetes through miR-194-dependent pathway.


Assuntos
Colágeno/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Metaloproteinases da Matriz/metabolismo , MicroRNAs/metabolismo , Morfolinas/administração & dosagem , Compostos Organotiofosforados/administração & dosagem , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais , Sulfeto de Hidrogênio/metabolismo , Camundongos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...