Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38929187

RESUMO

The indolamine hormone melatonin, also known as N-acetyl-5-methoxytrypamine, is frequently associated with circadian rhythm regulation. Light can suppress melatonin secretion, and photoperiod regulates melatonin levels by promoting its production and secretion at night in response to darkness. This hormone is becoming more and more understood for its functions as an immune-modulatory, anti-inflammatory, and antioxidant hormone. Melatonin may have a major effect on several diabetes-related disturbances, such as hormonal imbalances, oxidative stress, sleep disturbances, and mood disorders, according to recent research. This has raised interest in investigating the possible therapeutic advantages of melatonin in the treatment of diabetic complications. In addition, several studies have described that melatonin has been linked to the development of diabetes, cancer, Alzheimer's disease, immune system disorders, and heart diseases. In this review, we will highlight some of the functions of melatonin regarding vascular biology.

2.
Biomedicines ; 12(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38397886

RESUMO

Omentin is an adipokine mainly produced by visceral fat tissue. It has two isoforms, omentin-1 and omentin-2. Omentin-1 is predominantly secreted by visceral adipose tissue, derived specifically from the stromal vascular fraction cells of white adipose tissue (WAT). Levels of omentin-1 are also expressed in other WAT depots, such as epicardial adipose tissue. Omentin-1 exerts several beneficial effects in glucose homeostasis in obesity and diabetes. In addition, research has suggested that omentin-1 may have atheroprotective (protective against the development of atherosclerosis) and anti-inflammatory effects, potentially contributing to cardiovascular health. This review highlights the potential therapeutic targets of omentin-1 in metabolic disorders.

3.
EPMA J ; 13(2): 209-235, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35611340

RESUMO

Endothelium, the gatekeeper of our blood vessels, is highly heterogeneous and a crucial physical barrier with the ability to produce vasoactive and protective mediators under physiological conditions. It regulates vascular tone, haemostasis, vascular inflammation, remodelling, and angiogenesis. Several cardio-, reno-, and cerebrovascular diseases begin with the dysfunction of endothelial cells, and more recently, COVID-19 was also associated with endothelial disease highlighting the need to monitor its function towards prevention and reduction of vascular dysfunction. Endothelial cells are an important therapeutic target in predictive, preventive, and personalised (3P) medicine with upmost importance in vascular diseases. The development of novel non-invasive techniques to access endothelial dysfunction for use in combination with existing clinical imaging modalities provides a feasible opportunity to reduce the burden of vascular disease. This review summarises recent advances in the principles of endothelial function measurements. This article presents an overview of invasive and non-invasive techniques to determine vascular function and their major advantages and disadvantages. In addition, the article describes mechanisms underlying the regulation of vascular function and dysfunction and potential new biomarkers of endothelial damage. Recognising these biomarkers is fundamental towards a shift from reactive to 3P medicine in the vascular field. Identifying vascular dysfunction earlier with non-invasive or minimally invasive techniques adds value to predictive diagnostics and targeted prevention (primary, secondary, tertiary care). In addition, vascular dysfunction is a potential target for treatments tailored to the person.

4.
Antioxidants (Basel) ; 12(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36670944

RESUMO

Cinnamaldehyde (CN) is an activator of NF-E2-related factor 2 (Nrf2), which has the potential to reduce endothelial dysfunction, oxidative stress and inflammation in metabolic disorders. Our main purpose was to evaluate the effects of CN on vascular dysfunction in metabolic syndrome rats. Normal Wistar (W) rats were divided into eight groups: (1) Wistar (W) rats; (2) W rats fed with a high-fat diet (WHFD); (3) W rats fed with a sucrose diet (WS); (4) WHFD fed with a sucrose diet (WHFDS); (5) W treated with CN (WCn); (6) WS treated with CN (WSCn); (7) WHFD treated with CN (WHFDCn); (8) WHFDS treated with CN (WHFDSCn). CN treatment with 20 mg/kg/day was administered for 8 weeks. Evaluation of metabolic profile, inflammation, endothelial function, oxidative stress, eNOS expression levels and Nrf2 activation was performed. The metabolic dysfunction was greatly exacerbated in the WHFDS rats, accompanied by significantly higher levels of vascular oxidative stress, inflammation, and endothelial dysfunction. In addition, the WHFDS rats displayed significantly reduced activity of Nrf2 at the vascular level. CN significantly reverted endothelial dysfunction in the aortas and the mesenteric arteries. In addition, CN significantly decreased vascular oxidative damage, inflammation at vascular and perivascular level and up-regulated Nrf2 activity in the arteries of WHFDS rats. Cinnamaldehyde, an activator of Nrf2, can be used to improve metabolic profile, and to revert endothelial dysfunction in obesity and metabolic syndrome.

5.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948468

RESUMO

We investigated the effects of luteolin on metabolism, vascular reactivity, and perivascular adipose tissue (PVAT) in nonobese type 2 diabetes mellitus animal model, Goto-Kakizaki (GK) rats. METHODS: Wistar and GK rats were divided in two groups: (1) control groups treated with vehicle; (2) groups treated with luteolin (10 mg/kg/day, for 2 months). Several metabolic parameters such as adiposity index, lipid profile, fasting glucose levels, glucose and insulin tolerance tests were determined. Endothelial function and contraction studies were performed in aortas with (PVAT+) or without (PVAT-) periaortic adipose tissue. We also studied vascular oxidative stress, glycation and assessed CRP, CCL2, and nitrotyrosine levels in PVAT. RESULTS: Endothelial function was impaired in diabetic GK rats (47% (GK - PVAT) and 65% (GK + PVAT) inhibition of maximal endothelial dependent relaxation) and significantly improved by luteolin treatment (29% (GK - PVAT) and 22% (GK + PVAT) inhibition of maximal endothelial dependent relaxation, p < 0.01). Vascular oxidative stress and advanced glycation end-products' levels were increased in aortic rings (~2-fold, p < 0.05) of diabetic rats and significantly improved by luteolin treatment (to levels not significantly different from controls). Periaortic adipose tissue anti-contractile action was significantly rescued with luteolin administration (p < 0.001). In addition, luteolin treatment significantly recovered proinflammatory and pro-oxidant PVAT phenotype, and improved systemic and metabolic parameters in GK rats. CONCLUSIONS: Luteolin ameliorates endothelial dysfunction in type 2 diabetes and exhibits therapeutic potential for the treatment of vascular complications associated with type 2 diabetes.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Luteolina/administração & dosagem , Tecido Adiposo/efeitos dos fármacos , Animais , Proteínas de Transporte/metabolismo , Quimiocina CCL2/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Esquema de Medicação , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Luteolina/farmacologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Tirosina/análogos & derivados , Tirosina/metabolismo
6.
Pharmaceutics ; 13(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804727

RESUMO

The aim of this study was to develop multiparticulate systems with a combination of ezetimibe micellar systems and atorvastatin solid dispersions using croscarmellose as a hydrophilic vehicle and Kolliphor RH40 as a surfactant. The presence of a surfactant with low hydrophilic polymer ratios produces the rapid dissolution of ezetimibe through a drug-polymer interaction that reduces its crystallinity. The solid dispersion of atorvastatin with low proportions of croscarmellose showed drug-polymer interactions sufficient to produce the fast dissolution of atorvastatin. Efficacy studies were performed in diabetic Goto-Kakizaki rats with induced hyperlipidemia. The administration of multiparticulate systems of ezetimibe and atorvastatin at low (2 and 6.7 mg/kg) and high (3 and 10 mg/kg) doses showed similar improvements in levels of cholesterol, triglycerides, lipoproteins, alanine transaminase, and aspartate transaminase compared to the high-fat diet group. Multiparticulate systems at low doses (2 and 6.7 mg/kg of ezetimibe and atorvastatin) had a similar improvement in hepatic steatosis compared to the administration of ezetimibe and atorvastatin raw materials at high doses (3 and 10 mg/kg). These results confirm the effectiveness of solid dispersions with low doses of ezetimibe and atorvastatin to reduce high lipid levels and hepatic steatosis in diabetic rats fed a high-fat diet.

8.
Free Radic Biol Med ; 162: 233-242, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33099000

RESUMO

BACKGROUND: Perivascular adipose tissue (PVAT) locally influences the functioning of blood vessels and promotes vascular complications associated with diabetes and obesity. The aim of this work was to study the impact of omentin-1 on endothelial function and PVAT in a non-obese type 2 diabetes mellitus animal model, Goto-Kakizaki (GK) rats with or without high fat diet. MATERIAL AND METHODS: Diabetic GK rats were divided into four groups: 1) control group; 2) group treated with omentin-1; 3) group of GK rats fed a high fat diet (GKHFD) and 4) group of GKHFD treated with omentin-1. Several in vivo parameters such as adiposity and Lee indexes, lipid profile, fasting glucose levels, glucose and insulin tolerance tests were determined. At the vascular level, endothelial dependent and independent relaxation and contraction studies were performed in aortic rings in the absence (PVAT-) or in the presence (PVAT+) of thoracic PVAT. We also evaluated vascular oxidative stress and determined the pro-inflammatory status of PVAT. RESULTS: Endothelium-dependent relaxation to acetylcholine, assessed by wire myography, was impaired in GK and GKHFD rats and improved by the omentin-1 treatment. In addition, vascular superoxide production was increased in the vascular wall of diabetic rats, accompanied by reduced nitric oxide bioavailability and significantly improved by omentin treatment. PVAT anti-contractile action found under physiological conditions was lost in type 2 diabetes, and partially recovered with omentin-1 administration. In addition, omentin-1 treatment significantly improved proinflammatory and pro-oxidant PVAT phenotype (decreasing C-reactive protein and nitrotyrosine levels). Furthermore, it was observed an improvement in various systemic and metabolic biochemical parameters of diabetic animals treated for one month with omentin. CONCLUSIONS: Omentin-1 ameliorates endothelial dysfunction in type 2 diabetes and presents therapeutic potential for the treatment of vascular complications associated with type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Tecido Adiposo , Animais , Citocinas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Endotélio Vascular , Lectinas , Óxido Nítrico , Obesidade/tratamento farmacológico , Ratos
9.
Ageing Res Rev ; 59: 101040, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32112889

RESUMO

Perivascular adipose tissue (PVAT), a crucial regulator of vascular homeostasis, is actively involved in vascular dysfunction during aging. PVAT releases various adipocytokines, chemokines and growth factors. In an endocrine and paracrine manner PVAT-derived factors regulate vascular signalling and inflammation modulating functions of adjacent layers of the vasculature. Pathophysiological conditions such as obesity, type 2 diabetes, vascular injury and aging can cause PVAT dysfunction, leading to vascular endothelial and smooth muscle cell dysfunctions. We and others have suggested that PVAT is involved in the inflammatory response of the vascular wall in diet induced obesity animal models leading to vascular dysfunction due to disappearance of the physiological anticontractile effect. Previous studies confirm a crucial role for pinpointed PVAT inflammation in promoting vascular oxidative stress and inflammation in aging, enhancing the risk for development of cardiovascular disease. In this review, we discuss several studies and mechanisms linking PVAT to age-related vascular diseases. An overview of the suggested roles played by PVAT in different disorders associated with the vasculature such as endothelial dysfunction, neointimal formation, aneurysm, vascular contractility and stiffness will be performed. PVAT may be considered a potential target for therapeutic intervention in age-related vascular disease.


Assuntos
Envelhecimento/fisiologia , Doenças Vasculares/fisiopatologia , Adipocinas , Tecido Adiposo , Animais , Diabetes Mellitus Tipo 2 , Humanos , Obesidade , Lesões do Sistema Vascular
10.
Free Radic Biol Med ; 146: 264-274, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31698080

RESUMO

BACKGROUND: Perivascular adipose tissue (PVAT) surrounds most large blood vessels and plays an important role in vascular homeostasis. The present study was conducted to investigate the contribution of PVAT to vascular dysfunction in a rat model of type 2 diabetes. MATERIAL AND METHODS: Several in vivo parameters such as lipid profile (total cholesterol and triglyceride systemic levels), fasting glucose levels, glucose tolerance and insulin sensitivity (through glucose and insulin tolerance tests, respectively) were determined in Goto-Kakizaki (GK) diabetic rats and compared with control Wistar rats. At the vascular level, endothelial dependent and independent relaxation and contraction studies were performed in aortic rings in the absence (PVAT-) or in the presence (PVAT+) of thoracic PVAT. We also evaluated vascular oxidative stress and performed western blots, PCR and immunohistochemistry analysis of cytokines and various enzymes in PVAT. RESULTS: Endothelium-dependent relaxation to acetylcholine, assessed by wire myography, was impaired in GK rats and improved by the antioxidant TEMPOL and by the TLR4 inhibitor, CLI-095 suggesting an increase in oxidative stress and inflammation. In addition, vascular superoxide and peroxynitrite production was increased in the vascular wall of diabetic rats, accompanied by reduced nitric oxide bioavailability. The presence of PVAT had an anticontractile effect in response to phenylephrine in Wistar rats that was lost in GK rats. Western blot and immunohistochemistry analysis revealed that PVAT phenotype shifts, under diabetic conditions, towards a proinflammatory (with increment in CRP, CCL2, CD36), pro-oxidant (increased levels of aldose reductase, and reduced levels of antioxidant deference enzymes) and vasoconstriction state. CONCLUSION: Our data suggest that this rat model of type 2 diabetes is associated with perivascular adipose dysfunction that contributes to oxidative stress, inflammation and endothelial dysfunction.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Tecido Adiposo/metabolismo , Animais , Antioxidantes/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar , Vasoconstrição
13.
Front Physiol ; 9: 1668, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564132

RESUMO

Oxidative stress has been defined as an imbalance between oxidants and antioxidants and more recently as a disruption of redox signaling and control. It is generally accepted that oxidative stress can lead to cell and tissue injury having a fundamental role in vascular dysfunction. Physiologically, reactive oxygen species (ROS) control vascular function by modulating various redox-sensitive signaling pathways. In vascular disorders, oxidative stress instigates endothelial dysfunction and inflammation, affecting several cells in the vascular wall. Vascular ROS are derived from multiple sources herein discussed, which are prime targets for therapeutic development. This review focuses on oxidative stress in vascular physiopathology and highlights different strategies to inhibit ROS production.

14.
Sci Rep ; 7(1): 14357, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29085055

RESUMO

In this study we investigate pyridoxamine (PM) and/or sulforaphane (SFN) as therapeutic interventions to determine whether activators of NFE2-related factor 2 (Nrf2) can be used in addition with inhibitors of advanced glycation end products (AGE) formation to attenuate oxidative stress and improve endothelial dysfunction in type 2 diabetes. Goto-kakizaki (GK) rats, an animal model of non-obese type 2 diabetes, were treated with or without PM and/or SFN during 8 weeks and compared with age-matched Wistar rats. At the end of the treatment, nitric oxide (NO)-dependent and independent vasorelaxation in isolated aorta and mesenteric arteries were evaluated. Metabolic profile, NO bioavailability and vascular oxidative stress, AGE and Nrf2 levels were also assessed. Diabetic GK rats presented significantly lower levels of Nrf2 and concomitantly exhibited higher levels of oxidative stress and endothelial dysfunction. PM and SFN as monotherapy were capable of significantly improving endothelial dysfunction in aorta and mesenteric arteries decreasing vascular oxidative damage, AGE and HbA1c levels. Furthermore, SFN + PM proved more effective reducing systemic free fatty acids levels, normalizing endothelial function, NO bioavailability and glycation in GK rats. Activators of Nrf2 can be used therapeutically in association with inhibitors of AGE and cross-linking formation to normalize endothelial dysfunction in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Isotiocianatos/farmacologia , Piridoxamina/farmacologia , Animais , Aorta/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Suplementos Nutricionais , Modelos Animais de Doenças , Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Endotélio Vascular/metabolismo , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Produtos Finais de Glicação Avançada/metabolismo , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Sulfóxidos , Doenças Vasculares/fisiopatologia , Vasodilatação/efeitos dos fármacos
15.
Br J Pharmacol ; 174(20): 3514-3526, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28236429

RESUMO

BACKGROUND AND PURPOSE: Adiponectin, the most abundant peptide secreted by adipocytes, is involved in the regulation of energy metabolism and vascular physiology. Here, we have investigated the effects of exogenous administration of adiponectin on metabolism, vascular reactivity and perivascular adipose tissue (PVAT) of mesenteric arteries in Wistar rats fed a high-fat diet. EXPERIMENTAL APPROACH: The effects of adiponectin on NO-dependent and independent vasorelaxation were investigated in isolated mesenteric arteries from 12-month-old male Wistar rats (W12m) fed a high-fat diet (HFD) for 4 months and compared with those from age-matched rats given a control diet. Adiponectin ((96 µg·day-1 ) was administered by continuous infusion with a minipump, implanted subcutaneously, for 28 days. KEY RESULTS: Chronic adiponectin treatment reduced body weight, total cholesterol, free fatty acids, fasting glucose and area under the curve of intraperitoneal glucose tolerance test, compared with HFD rats. It also normalized NO-dependent vasorelaxation increasing endothelial NO synthase (eNOS) phosphorylation in mesenteric arteries of HFD rats. In PVAT from aged (W12m) and HFD rats there was increased expression of chemokines and pro-inflammatory adipokines, the latter being important contributors to endothelial dysfunction. Infusion of adiponectin reduced these changes. CONCLUSIONS AND IMPLICATIONS: Adiponectin normalized endothelial cell function by a mechanism that involved increased eNOS phoshorylation and decreased PVAT inflammation. Detailed characterization of the adiponectin signalling pathway in the vasculature and perivascular fat is likely to provide novel approaches to the management of atherosclerosis and metabolic disease. LINKED ARTICLES: This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.


Assuntos
Adiponectina/farmacologia , Tecido Adiposo/fisiologia , Dieta Hiperlipídica , Endotélio Vascular/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Endotélio Vascular/fisiologia , Masculino , Artérias Mesentéricas/fisiologia , Óxido Nítrico/fisiologia , Estresse Oxidativo , Ratos , Ratos Wistar , Vasodilatação
16.
J Alzheimers Dis ; 45(1): 127-38, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25471187

RESUMO

Vascular risk factors are associated with a higher incidence of dementia. In fact, diabetes mellitus is considered a main risk factor for Alzheimer's disease (AD) and both diseases are characterized by vascular dysfunction. However, the underlying mechanisms remain largely unknown. Here, the effects of high-sucrose-induced type 2 diabetes (T2D) in the aorta of wild type (WT) and triple-transgenic AD (3xTg-AD) mice were investigated. 3xTg-AD mice showed a significant decrease in body weight and an increase in postprandial glycemia, glycated hemoglobin (HbA1c), and vascular nitrotyrosine, superoxide anion (O2•-), receptor for the advanced glycation end products (RAGE) protein, and monocyte chemoattractant protein-1 (MCP-1) levels when compared to WT mice. High-sucrose intake caused a significant increase in body weight, postprandial glycemia, HbA1c, triglycerides, plasma vascular cell adhesion molecule 1 (VCAM-1), and vascular nitrotyrosine, O2•-, RAGE, and MCP-1 levels in both WT and 3xTg-AD mice when compared to the respective control group. Also, a significant decrease in nitric oxide-dependent vasorelaxation was observed in 3xTg-AD and sucrose-treated WT mice. In conclusion, AD and T2D promote similar vascular dysfunction of the aorta, this effect being associated with elevated oxidative and nitrosative stress and inflammation. Also, AD-associated vascular alterations are potentiated by T2D. These findings support the idea that metabolic alterations predispose to the onset and progression of dementia.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Aorta/patologia , Diabetes Mellitus Tipo 2/complicações , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Modelos Animais de Doenças , Endotelina-1/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Nitroprussiato/farmacologia , Presenilina-1/genética , Superóxido Dismutase/metabolismo , Vasodilatadores/farmacologia , Proteínas tau/genética
17.
Can J Physiol Pharmacol ; 92(12): 1037-43, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25404034

RESUMO

Insulin resistance, a key feature of obesity, metabolic syndrome, and type 2 diabetes mellitus (T2DM), results in a variety of metabolic and vascular abnormalities. Metabolic disturbances associated with diabetes could contribute to disrupting the structural and (or) functional integrity of the retina. The effects of atorvastatin on retinal cells in hyperlipidemic T2DM rats have not yet been investigated. We used Goto-Kakizaki (GK) rats fed with an atherogenic diet (AD) for 4 months to investigate whether atorvastatin (administered for 1 month) would slow-down or reverse the progression of lesions in the diabetic retina. Fluorogenic substrates were used to measure the proteasome activities in retinal cells. The production of reactive oxygen species was determined by immunofluorescence in frozen retina sections, using dihydroethydium. Nitrotyrosine levels were assessed using immunohistochemistry. Protein levels of ubiquitin conjugates, free ubiquitin, and ubiquitin activating enzyme E1 were determined with Western blotting. Atorvastatin significantly reduced the levels of oxidative stress that were induced by the AD and restored the proteasome activities in the diabetic GK rats. Atorvastatin therapy significantly improved local oxidative stress levels in GK rats fed with AD. Atorvastatin can, at least in part, restore the ubiquitin proteasome system, and may represent a pharmacological approach to prevent some of the complications associated with diabetic retinopathy.


Assuntos
Antioxidantes/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Retinopatia Diabética/tratamento farmacológico , Ácidos Heptanoicos/uso terapêutico , Hiperlipidemias/tratamento farmacológico , Pirróis/uso terapêutico , Retina/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Atorvastatina , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/etiologia , Retinopatia Diabética/patologia , Dieta Aterogênica , Ácidos Heptanoicos/farmacologia , Hiperlipidemias/induzido quimicamente , Hiperlipidemias/complicações , Hiperlipidemias/patologia , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Pirróis/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Retina/patologia , Ubiquitina/metabolismo
18.
J Bioenerg Biomembr ; 46(5): 347-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24831520

RESUMO

Advanced glycation end products (AGEs) and methylglyoxal (MG), an important intermediate in AGEs synthesis, are thought to contribute to protein aging and to the pathogenesis of age-and diabetes-associated complications. This study was intended to investigate brain mitochondria bioenergetics and oxidative status of rats previously exposed to chronic treatment with MG and/or with pyridoxamine (PM), a glycation inhibitor. Brain mitochondrial fractions were obtained and several parameters were analyzed: respiratory chain [states 3 and 4 of respiration, respiratory control ratio (RCR), and ADP/O index] and phosphorylation system [transmembrane potential (ΔΨm), ADP-induced depolarization, repolarization lag phase, and ATP levels]; hydrogen peroxide (H2O2) production levels, mitochondrial aconitase activity, and malondialdehyde levels as well as non-enzymatic antioxidant defenses (vitamin E and glutathione levels) and enzymatic antioxidant defenses (glutathione disulfide reductase (GR), glutathione peroxidase (GPx), and manganese superoxide dismutase (MnSOD) activities). MG treatment induced a statistical significant decrease in RCR, aconitase and GR activities, and an increase in H2O2 production levels. The administration of PM did not counteract MG-induced effects and caused a significant decrease in ΔΨm. In mitochondria from control animals, PM caused an adaptive mechanism characterized by a decrease in aconitase and GR activities as well as an increase in both α-tocopherol levels and GPx and MnSOD activities. Altogether our results show that high levels of MG promote brain mitochondrial impairment and PM is not able to reverse MG-induced effects.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Piridoxamina/farmacologia , Aldeído Pirúvico/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Metabolismo Energético , Produtos Finais de Glicação Avançada/metabolismo , Glioxal/metabolismo , Masculino , Oxirredução , Consumo de Oxigênio/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar
19.
Biochim Biophys Acta ; 1832(12): 2216-31, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23994612

RESUMO

The vascular endothelium is a multifunctional organ and is critically involved in modulating vascular tone and structure. Endothelial cells produce a wide range of factors that also regulate cellular adhesion, thromboresistance, smooth muscle cell proliferation, and vessel wall inflammation. Thus, endothelial function is important for the homeostasis of the body and its dysfunction is associated with several pathophysiological conditions, including atherosclerosis, hypertension and diabetes. Patients with diabetes invariably show an impairment of endothelium-dependent vasodilation. Therefore, understanding and treating endothelial dysfunction is a major focus in the prevention of vascular complications associated with all forms of diabetes mellitus. The mechanisms of endothelial dysfunction in diabetes may point to new management strategies for the prevention of cardiovascular disease in diabetes. This review will focus on the mechanisms and therapeutics that specifically target endothelial dysfunction in the context of a diabetic setting. Mechanisms including altered glucose metabolism, impaired insulin signaling, low-grade inflammatory state, and increased reactive oxygen species generation will be discussed. The importance of developing new pharmacological approaches that upregulate endothelium-derived nitric oxide synthesis and target key vascular ROS-producing enzymes will be highlighted and new strategies that might prove clinically relevant in preventing the development and/or retarding the progression of diabetes associated vascular complications.


Assuntos
Angiopatias Diabéticas/etiologia , Endotélio Vascular/patologia , Animais , Angiopatias Diabéticas/patologia , Humanos
20.
Pharmacol Res ; 65(5): 497-506, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22425979

RESUMO

Modern diets can cause modern diseases. Research has linked a metabolite of sugar, methylglyoxal (MG), to the development of diabetic complications, but the exact mechanism has not been fully elucidated. The present study was designed to investigate whether MG could directly influence endothelial function, oxidative stress and inflammation in Wistar and Goto-Kakizaki (GK) rats, an animal model of type 2 diabetes. Wistar and GK rats treated with MG in the drinking water for 3 months were compared with the respective control rats. The effects of MG were investigated on NO-dependent vasorelaxation in isolated rat aortic arteries from the different groups. Insulin resistance, NO bioavailability, glycation, a pro-inflammatory biomarker monocyte chemoattractant protein-1 (MCP-1) and vascular oxidative stress were also evaluated. Methylglyoxal treated Wistar rats significantly reduced the efficacy of NO-dependent vasorelaxation (p<0.001). This impairment was accompanied by a three fold increase in the oxidative stress marker nitrotyrosine. Advanced glycation endproducts (AGEs) formation was significantly increased as well as MCP-1 and the expression of the receptor for AGEs (RAGE). NO bioavailability was significantly attenuated and accompanied by an increase in superoxide anion immunofluorescence. Methylglyoxal treated GK rats significantly aggravated endothelial dysfunction, oxidative stress, AGEs accumulation and diminished NO bioavailability when compared with control GK rats. These results indicate that methylglyoxal induced endothelial dysfunction in normal Wistar rats and aggravated the endothelial dysfunction present in GK rats. The mechanism is at least in part by increasing oxidative stress and/or AGEs formation with a concomitant increment of inflammation and a decrement in NO bioavailability. The present study provides further evidence for methylglyoxal as one of the causative factors in the pathogenesis of atherosclerosis and development of macrovascular diabetic complication.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Aldeído Pirúvico/toxicidade , Animais , Moléculas de Adesão Celular/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Produtos Finais de Glicação Avançada/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Proteínas dos Microfilamentos/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfoproteínas/metabolismo , Aldeído Pirúvico/metabolismo , Ratos , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/metabolismo , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...