Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8199, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589513

RESUMO

We present a kinematic model developed from geodetic observations, topography analysis and analogue tectonic modelling results, which reveals a striking similarity between the rotational tectonic settings of the Gakkel Ridge-Chersky Range system in the Arctic, and the Central Indian Tectonic Zone within the Indian subcontinent. A crucial aspect of large-scale extensional rift systems is the gradual variation of extension along the rift axis, due to plate rotation about a Euler pole, which may lead to contraction on the opposite side of the Euler pole to form a rotational tectonic system. Our geodetic and topographic analysis, combined with the reanalysis of analogue tectonic modelling results demonstrates such rotational tectonic plate motion in both the Arctic and Indian case. However, the plate boundary between the North American and Eurasian Plates as represented by the Arctic Gakkel Ridge-Chersky Range system is strongly localized, whereas the Central Indian Tectonic Zone that separates the North and South India Plates involves diffuse deformation instead. Furthermore, in both the Arctic and Central Indian we find that the relative Euler rotation pole is located near an indenter-like feature, which possibly controls the present-day rotational tectonics and contrasting topography on opposite sides of the Euler pole.

2.
Sci Rep ; 14(1): 2311, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38280931

RESUMO

Ground-based monitoring of seismicity and modulation by external forces in the field of planetary seismology remains equivocal due to the lack of natural observations. Constrained by the natural observations (including Earthquakes, Moonquakes, and Marsquakes) and theoretical models, we present the variation in gravitational acceleration "g" of different solar system objects, combined with external harmonic forcings that are responsible for seismicity modulation on the planetary bodies and their natural satellites. From the global diversity in seismicity modulation, it has been observed that the plate-boundary regions on the Earth exhibit both short and long-period seismicity modulation. In contrast, the stable plate interior regions appear to be more sensitive to long-period seismicity modulation, however, lacking in short-period modulation. The deep Moonquakes are susceptible for both the lunar tidal period (13.6 days and 27 days) and long-period pole wobble modulation (206 days), whereas shallow emergent type moonquakes show a seismic periodicity at the lunation period (29.5 days). Further, the seasonal variation with an annual seismicity burst and seismic periodicity at polar wobble periods for high-frequency Marsquakes captured by InSight lander indicate a natural origin. Whereas diurnal and semi-diurnal periodicity along with Phobos' tidal period, indicate possible artifacts due to different detection probabilities and non-seismic noise in the Martian environment. We argue that, in the context of rate-state-dependent fault friction, the gravity-induced resonance destabilization model appears to be better agreement with the contrast and relative diversity in seismicity modulation linked to the Earth, Moon, and Mars.

3.
Sci Rep ; 11(1): 2793, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531554

RESUMO

Atmospheric waves excited by strong surface explosions, both natural and anthropogenic, often disturb upper atmosphere. In this letter, we report an N-shaped pulse with period ~ 1.3 min propagating southward at ~ 0.8 km/s, observed as changes in ionospheric total electron content using continuous GNSS stations in Israel and Palestine, ~ 10 min after the August 4, 2020 chemical explosion in Beirut, Lebanon. The peak-to-peak amplitude of the disturbance reached ~ 2% of the background electrons, comparable to recently recorded volcanic explosions in the Japanese Islands. We also succeeded in reproducing the observed disturbances assuming acoustic waves propagating upward and their interaction with geomagnetic fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...