Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Eng Technol ; 43(2): 87-99, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31198073

RESUMO

Diabetic retinopathy is a serious microvascular disorder that might result in loss of vision and blindness. It seriously damages the retinal blood vessels and reduces the light-sensitive inner layer of the eye. Due to the manual inspection of retinal fundus images on diabetic retinopathy to detect the morphological abnormalities in Microaneurysms (MAs), Exudates (EXs), Haemorrhages (HMs), and Inter retinal microvascular abnormalities (IRMA) is very difficult and time consuming process. In order to avoid this, the regular follow-up screening process, and early automatic Diabetic Retinopathy detection are necessary. This paper discusses various methods of analysing automatic retinopathy detection and classification of different grading based on the severity levels. In addition, retinal blood vessel detection techniques are also discussed for the ultimate detection and diagnostic procedure of proliferative diabetic retinopathy. Furthermore, the paper elaborately discussed the systematic review accessed by authors on various publicly available databases collected from different medical sources. In the survey, meta-analysis of several methods for diabetic feature extraction, segmentation and various types of classifiers have been used to evaluate the system performance metrics for the diagnosis of DR. This survey will be helpful for the technical persons and researchers who want to focus on enhancing the diagnosis of a system that would be more powerful in real life.


Assuntos
Retinopatia Diabética/diagnóstico por imagem , Retinopatia Diabética/diagnóstico , Algoritmos , Animais , Hemorragia/diagnóstico , Hemorragia/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador , Aprendizado de Máquina , Microaneurisma/diagnóstico , Microaneurisma/diagnóstico por imagem
2.
Springerplus ; 5(1): 2100, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28053830

RESUMO

This paper presents a listless variant of a modified three-dimensional (3D)-block coding algorithm suitable for medical image compression. A higher degree of correlation is achieved by using a 3D hybrid transform. The 3D hybrid transform is performed by a wavelet transform in the spatial dimension and a Karhunen-Loueve transform in the spectral dimension. The 3D transformed coefficients are arranged in a one-dimensional (1D) fashion, as in the hierarchical nature of the wavelet-coefficient distribution strategy. A novel listless block coding algorithm is applied to the mapped 1D coefficients which encode in an ordered-bit-plane fashion. The algorithm originates from the most significant bit plane and terminates at the least significant bit plane to generate an embedded bit stream, as in 3D-SPIHT. The proposed algorithm is called 3D hierarchical listless block (3D-HLCK), which exhibits better compression performance than that exhibited by 3D-SPIHT. Further, it is highly competitive with some of the state-of-the-art 3D wavelet coders for a wide range of bit rates for magnetic resonance, digital imaging and communication in medicine and angiogram images. 3D-HLCK provides rate and resolution scalability similar to those provided by 3D-SPIHT and 3D-SPECK. In addition, a significant memory reduction is achieved owing to the listless nature of 3D-HLCK.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...