Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr ; 154(2): 554-564, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103646

RESUMO

BACKGROUND: Protein digestion and amino acid absorption appear compromised in critical illness. The provision of enteral feeds with free amino acids rather than intact protein may improve postprandial amino acid availability. OBJECTIVE: Our objective was to quantify the uptake of diet-derived phenylalanine after the enteral administration of intact protein compared with an equivalent amount of free amino acids in critically ill patients. METHODS: Sixteen patients who were mechanically ventilated in intensive care unit (ICU) at risk of malabsorption received a primed continuous infusion of L-[ring-2H5]-phenylalanine and L-[ring-3,5-2H2]-tyrosine after an overnight fast. Patients were randomly allocated to receive 20 g intrinsically L-[1-13C]-phenylalanine-labeled milk protein or an equivalent amount of amino acids labeled with free L-[1-13C]-phenylalanine via a nasogastric tube over a 2-h period. Protein digestion and amino acid absorption kinetics and whole-body protein net balance were assessed throughout a 6-h period. RESULTS: After enteral nutrient infusion, both plasma phenylalanine and leucine concentrations increased (P-time < 0.001), with a more rapid and greater rise after free amino acid compared with intact protein administration (P-time × treatment = 0.003). Diet-derived phenylalanine released into the circulation was 25% greater after free amino acids compared with intact protein administration [68.7% (confidence interval {CI}: 62.3, 75.1%) compared with 43.8% (CI: 32.4, 55.2%), respectively; P < 0.001]. Whole-body protein net balance became positive after nutrient administration (P-time < 0.001) and tended to be more positive after free amino acid in provision (P-time × treatment = 0.07). CONCLUSIONS: The administration of free amino acids as opposed to intact protein further increases postprandial plasma amino acid availability in critically ill patients, allowing more diet-derived phenylalanine to become available to peripheral tissues. This trial was registered at clinicaltrials.gov as NCT04791774.


Assuntos
Aminoácidos , Estado Terminal , Humanos , Estado Terminal/terapia , Proteínas Alimentares , Proteínas Musculares/metabolismo , Fenilalanina , Período Pós-Prandial
2.
J Nutr ; 146(5): 986-93, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27075914

RESUMO

BACKGROUND: Dietary nitrate is receiving increased attention due to its reported ergogenic and cardioprotective properties. The extent to which ingestion of various nitrate-rich vegetables increases postprandial plasma nitrate and nitrite concentrations and lowers blood pressure is currently unknown. OBJECTIVE: We aimed to assess the impact of ingesting different nitrate-rich vegetables on subsequent plasma nitrate and nitrite concentrations and resting blood pressure in healthy normotensive individuals. METHODS: With the use of a semirandomized crossover design, 11 men and 7 women [mean ± SEM age: 28 ± 1 y; mean ± SEM body mass index (BMI, in kg/m(2)): 23 ± 1; exercise: 1-10 h/wk] ingested 4 different beverages, each containing 800 mg (∼12.9 mmol) nitrate: sodium nitrate (NaNO3), concentrated beetroot juice, a rocket salad beverage, and a spinach beverage. Plasma nitrate and nitrite concentrations and blood pressure were determined before and up to 300 min after beverage ingestion. Data were analyzed using repeated-measures ANOVA. RESULTS: Plasma nitrate and nitrite concentrations increased after ingestion of all 4 beverages (P < 0.001). Peak plasma nitrate concentrations were similar for all treatments (all values presented as means ± SEMs: NaNO3: 583 ± 29 µmol/L; beetroot juice: 597 ± 23 µmol/L; rocket salad beverage: 584 ± 24 µmol/L; spinach beverage: 584 ± 23 µmol/L). Peak plasma nitrite concentrations were different between treatments (NaNO3: 580 ± 58 nmol/L; beetroot juice: 557 ± 57 nmol/L; rocket salad beverage: 643 ± 63 nmol/L; spinach beverage: 980 ± 160 nmol/L; P = 0.016). When compared with baseline, systolic blood pressure declined 150 min after ingestion of beetroot juice (from 118 ± 2 to 113 ± 2 mm Hg; P < 0.001) and rocket salad beverage (from 122 ± 3 to 116 ± 2 mm Hg; P = 0.007) and 300 min after ingestion of spinach beverage (from 118 ± 2 to 111 ± 3 mm Hg; P < 0.001), but did not change with NaNO3 Diastolic blood pressure declined 150 min after ingestion of all beverages (P < 0.05) and remained lower at 300 min after ingestion of rocket salad (P = 0.045) and spinach (P = 0.001) beverages. CONCLUSIONS: Ingestion of nitrate-rich beetroot juice, rocket salad beverage, and spinach beverage effectively increases plasma nitrate and nitrite concentrations and lowers blood pressure to a greater extent than sodium nitrate. These findings show that nitrate-rich vegetables can be used as dietary nitrate supplements. This trial was registered at clinicaltrials.gov as NCT02271633.


Assuntos
Beta vulgaris/química , Pressão Sanguínea/efeitos dos fármacos , Brassicaceae/química , Dieta , Nitratos/sangue , Nitritos/sangue , Spinacia oleracea/química , Adulto , Feminino , Sucos de Frutas e Vegetais , Humanos , Masculino , Nitratos/farmacologia , Extratos Vegetais/farmacologia , Valores de Referência , Verduras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...