Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Divers ; 27(4): 1713-1733, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36103032

RESUMO

In the polyol pathway, aldose reductase (AR) catalyzes the formation of sorbitol from glucose. In order to detoxify some dangerous aldehydes, AR is essential. However, due to the effects of the active polyol pathway, AR overexpression in the hyperglycemic state leads to microvascular and macrovascular diabetic problems. As a result, AR inhibition has been recognized as a potential treatment for issues linked to diabetes and has been studied by numerous researchers worldwide. In the present study, a series of acyl hydrazones were obtained from the reaction of vanillin derivatized with acyl groups and phenolic Mannich bases with hydrazides containing pharmacological groups such as morpholine, piperazine, and tetrahydroisoquinoline. The resulting 21 novel acyl hydrazone compounds were investigated as an inhibitor of the AR enzyme. All the novel acyl hydrazones derived from vanillin demonstrated activity in nanomolar levels as AR inhibitors with IC50 and KI values in the range of 94.21 ± 2.33 to 430.00 ± 2.33 nM and 49.22 ± 3.64 to 897.20 ± 43.63 nM, respectively. Compounds 11c and 10b against AR enzyme activity were identified as highly potent inhibitors and showed 17.38 and 10.78-fold more effectiveness than standard drug epalrestat. The synthesized molecules' absorption, distribution, metabolism, and excretion (ADME) effects were also assessed. The probable-binding mechanisms of these inhibitors against AR were investigated using molecular-docking simulations.


Assuntos
Aldeído Redutase , Hidrazonas , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Hidrazonas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Benzaldeídos/farmacologia
2.
Drug Dev Res ; 83(3): 586-604, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34585414

RESUMO

A series of novel sulfonates containing quinazolin-4(3H)-one ring derivatives was designed to inhibit aldose reductase (ALR2, EC 1.1.1.21). Novel quinazolinone derivatives (1-21) were synthesized from the reaction of sulfonated aldehydes with 3-amino-2-alkylquinazolin-4(3H)-ones in glacial acetic acid with good yields (85%-94%). The structures of the novel molecules were characterized using IR, 1 H-NMR, 13 C-NMR, and HRMS. All the novel quinazolinones (1-21) demonstrated nanomolar levels of inhibitory activity against ALR2 (KI s are in the range of 101.50-2066.00 nM). Besides, 4-[(2-isopropyl-4-oxoquinazolin-3[4H]-ylimino)methyl]phenyl benzenesulfonate (15) showed higher inhibitor activity inhibited ALR2 up to 7.7-fold compared to epalrestat, a standard inhibitor. Binding interactions between ALR2 and quinazolinones have been investigated using Schrödinger Small-Molecule Drug Discovery Suite 2021-1, reported possible inhibitor-ALR2 interactions. Both in vitro and in silico study results suggest that these quinazolin-4(3H)-one ring derivatives (1-21) require further molecular modification to improve their drug nominee potency as an ALR2 inhibitor.


Assuntos
Aldeído Redutase , Inibidores Enzimáticos , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Quinazolinonas , Relação Estrutura-Atividade
3.
Arch Pharm (Weinheim) ; 354(5): e2000455, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33537994

RESUMO

3-Amino-2-ethylquinazolin-4(3H)-one (3) was synthesized in two steps from the reaction of amide (2), which was obtained from the treatment of methyl anthranilate (1) with propionyl chloride, with hydrazine. From the reaction of 3-amino-2-ethylquinazolin-4(3H)-one (3) with various aromatic aldehydes, novel benzylidenaminoquinazolin-4(3H)-one (3a-n) derivatives were synthesized. The structures of the novel molecules were characterized using infrared spectroscopy, nuclear magnetic resonance spectroscopy (1 H-NMR and 13 C-NMR), and high-resolution mass spectroscopy. The novel compounds were tested against some metabolic enzymes, including α-glucosidase (α-Glu), acetylcholinesterase (AChE), and human carbonic anhydrases I and II (hCA I and II). The novel compounds showed Ki values in the range of 244-988 nM for hCA I, 194-900 nM for hCA II, 30-156 nM for AChE, and 215-625 nM for α-Glu. The binding affinities of the most active compounds were calculated as -7.636, -6.972, -10.080, and -8.486 kcal/mol for hCA I, hCA II, AChE, and α-Glu enzymes, respectively. The aromatic ring of the quinazoline moiety plays a critical role in the inhibition of the enzymes.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Quinazolinonas/farmacologia , Acetilcolinesterase/metabolismo , Anidrases Carbônicas/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Quinazolinonas/síntese química , Quinazolinonas/química , Relação Estrutura-Atividade , alfa-Glucosidases/metabolismo
4.
J Colloid Interface Sci ; 498: 378-386, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28343135

RESUMO

Addressed herein is a facile seed-mediated synthesis of Ag/Pd core/shell nanoparticles (NPs) and their assembly on reduced graphene oxide (rGO) to catalyze the transfer hydrogenation of nitroarenes to anilines using ammonia borane (AB) as a hydrogen donor under ambient conditions. Monodisperse Ag/Pd core/shell NPs with controllable Pd shell-thickness were synthesized by the means of thermal decomposition of palladium(II) bromide over as-prepared Ag NPs in the mixture of oleylamine and oleic acid at 220°C. As-synthesized Ag/Pd core/shell NPs were characterized by TEM, HR-TEM, XRD, XPS, UV-Vis spectroscopy and ICP-MS and then they were assembled on reduced graphene oxide (rGO). Next, rGO@Ag/Pd catalysts were tested in the transfer hydrogenation of nitroarenes in which ammonia borane (AB) was used as a hydrogen donor at room temperature. It was demonstrated that the thickness of the Pd shell has a significant effect on the catalytic activity of rGO@Ag/Pd catalysts and the 1.75nm Pd shell provided the highest performance in the transfer hydrogenation reactions. The rGO@Ag/Pd catalyzed transfer hydrogenation reactions were tested over a variety of nitroarenes (total 16 examples) and they were all converted to the corresponding aniline derivatives with high yields in 5-15min under ambient conditions.

5.
J Enzyme Inhib Med Chem ; 31(sup1): 79-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27075164

RESUMO

ß-Lactam antibiotics are a broad class of antibiotics, consisting of all antibiotic agents that contain a ß-lactam ring in their molecular structures. Synthesis of ß-lactam analogs, which are containing dichloride atoms and N-methyl, N-aromatic rings, was achieved by Schiff bases and dichloroketene compounds. All the synthesized imines and ß-lactam analogs were tested against two physiologically relevant carbonic anhydrase isozymes (hCA I and II) and acetylcholinesterase (AChE). They demponstrated effective inhibitory profiles with Ki values in ranging of 3.22-11.18 nM against hCA I, 3.74-10.41 nM against hCA II, and 0.50-1.57 nM against AChE. On the other hand, acetazolamide and dorzolamide clinically used as CA inhibitors, showed Ki value of 170.34 and 129.26 nM against hCA I, and 115.43 and 135.67 nM against hCA II, respectively. Also, tacrine used as standard AChE inhibitor showed Ki value of 5.70 nM against AChE.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Quelantes/síntese química , Quelantes/farmacologia , Inibidores da Colinesterase/farmacologia , beta-Lactamas/síntese química , beta-Lactamas/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Quelantes/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , beta-Lactamas/química
6.
J Enzyme Inhib Med Chem ; 31(6): 939-45, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26308288

RESUMO

The synthesis of (Z)-4-oxo-4-(arylamino)but-2-enoic acid (4) derivatives containing structural characteristics that can be used for the synthesis of several active molecules, is presented. Some of the butenoic acid derivatives (4a, 4c, 4e, 4i, 4j, 4k) are synthesized following literature procedures and at the end of the reaction. In addition, structures of all synthesized derivatives (4a-4m) were determined by (1)H-NMR, (13)C-NMR and IR spectroscopy. Carbonic anhydrase is a metalloenzyme involved in many crucial physiologic processes as it catalyzes a simple but fundamental reaction, the reversible hydration of carbon dioxide to bicarbonate and protons. Significant results were obtained by evaluating the enzyme inhibitory activities of these derivatives against human carbonic anhydrase hCA I and II isoenzymes (hCA I and II). Butenoic acid derivatives (4a-4m) strongly inhibited hCA I and II with Kis in the low nanomolar range of 1.85 ± 0.58 to 5.04 ± 1.46 nM against hCA I and in the range of 2.01 ± 0.52 to 2.94 ± 1.31 nM against hCA II.


Assuntos
Butiratos/farmacologia , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica I/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Butiratos/síntese química , Butiratos/química , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...