Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Chem Lab Med ; 58(8): 1341-1348, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32623849

RESUMO

Background Genomic alterations studies in cell-free DNA (cfDNA) have increasing clinical use in oncology. Next-generation sequencing (NGS) technology provides the most complete mutational analysis, but nowadays limited data are available related to the comparison of results reported by different platforms. Here we compare two NGS panels for cfDNA: Oncomine™ Pan-Cancer Cell-Free Assay (Thermo Fisher Scientific), suitable for clinical laboratories, and Guardant360® (GuardantHealth), with more genes targeted but only available in an outsourcing laboratory. Methods Peripheral blood was obtained from 16 advanced cancer patients in which Guardant360® (G360) was requested as part of their clinical assistance. Blood samples were sent to be analyzed with G360 panel, and an additional blood sample was drawn to obtain and analyze cfDNA with Oncomine™ Pan-Cancer (OM) panel in an Ion GeneStudio S5™ System. Results cfDNA analysis globally rendered 101 mutations. Regarding the 55/101 mutations claimed to be included by manufacturers in both panels, 17 mutations were reported only by G360, 10 only by OM and 28 by both. In those coincident cases, there was a high correlation between the variant allele fractions (VAFs) calculated with each panel (r = 0.979, p < 0.01). Regarding the six actionable mutations with an FDA-approved therapy reported by G360, one was missed with OM. Also, 12 mutations with clinical trials available were reported by G360 but not by OM. Conclusions In summary, G360 and OM can produce different mutational profile in the same sample, even in genes included in both panels, which is especially important if these mutations are potentially druggable.


Assuntos
Ácidos Nucleicos Livres/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Neoplasias/genética , Humanos
2.
Adv Lab Med ; 1(4): 20200102, 2020 Dec.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-37360621

RESUMO

Objectives: Lactose malabsorption is generally assessed by hydrogen breath testing (HBT). However, this test is not recommended in patients with high baseline hydrogen concentrations (H2B). In addition, breath testing is not recommended in the current situation created by the COVID-19 pandemic, due to the potential infectiveness of the samples. The objective is to assess concordance between HBT and lactose tolerance test (LTT) depending on H2B concentrations. Methods: A total of 430 patients (40 years, Q1-Q3 = 28-54 years; 66.7% women) suspected of lactose malabsorption were included in the study. Breath and heparinized blood samples were collected at baseline and sequentially after the intake of 50 g of lactose, to measure hydrogen in breath and glycemia in blood, respectively. Results: H2B was <10 ppm in 69.5% of subjects; 10-20 ppm in 14.7%; and >20 ppm in 15.8% of subjects. In patients with H2B <20 ppm, concordance between HBT and LTT was moderate and consistently improved when the cut-off in LTT was set at 15 mg/dL. The increase in hydrogen and glucose correlated negatively (r=-0.389; p<0.05). The increase in glycemia during LTT was not influenced by H2B levels obtained in HBT. Conclusions: LTT emerges as an alternative to HBT to assess lactose malabsorption in the presence of high H2B levels or when breath testing is not recommended by the circumstances. The best concordance was obtained when the cut-off for LTT was set at 15 mg/dL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...