Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 33(6): 6778-6788, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30807703

RESUMO

Maintenance of human embryonic stem cells (hESCs) with stable genome is important for their future use in cell replacement therapy and disease modeling. Our understanding of the mechanisms maintaining genomic stability of hESC and our ability to modulate them is essential in preventing unwanted mutation accumulation during their in vitro cultivation. In this study, we show the DNA damage response mechanism in hESCs is composed of known, yet unlikely components. Clustered oxidative base damage is converted into DNA double-strand breaks (DSBs) by base excision repair (BER) and then quickly repaired by ligase (Lig)3-mediated end-joining (EJ). If there is further induction of clustered oxidative base damage by irradiation, then BER-mediated DSBs become essential in triggering the checkpoint response in hESCs. hESCs limit the mutagenic potential of Lig3-mediated EJ by DNA break end protection involving p53 binding protein 1 (53BP1), which results in fast and error-free microhomology-mediated repair and a low mutant frequency in hESCs. DSBs in hESCs are also repaired via homologous recombination (HR); however, DSB overload, together with massive end protection by 53BP1, triggers competition between error-free HR and mutagenic nonhomologous EJ.-Kohutova, A., Raska, J., Kruta, M., Seneklova, M., Barta, T., Fojtik, P., Jurakova, T., Walter, C. A., Hampl, A., Dvorak, P., Rotrekl, V. Ligase 3-mediated end-joining maintains genome stability of human embryonic stem cells.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA por Junção de Extremidades/fisiologia , DNA Ligase Dependente de ATP/metabolismo , Reparo do DNA/fisiologia , Instabilidade Genômica , Células-Tronco Embrionárias Humanas/fisiologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Células Cultivadas , Reparo do DNA por Junção de Extremidades/efeitos da radiação , DNA Ligase Dependente de ATP/genética , Reparo do DNA/efeitos da radiação , Recombinação Homóloga , Células-Tronco Embrionárias Humanas/citologia , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética
2.
Int J Nanomedicine ; 11: 6267-6281, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27920532

RESUMO

INTRODUCTION: Magnetic resonance (MR) imaging is suitable for noninvasive long-term tracking. We labeled human induced pluripotent stem cell-derived neural precursors (iPSC-NPs) with two types of iron-based nanoparticles, silica-coated cobalt zinc ferrite nanoparticles (CZF) and poly-l-lysine-coated iron oxide superparamagnetic nanoparticles (PLL-coated γ-Fe2O3) and studied their effect on proliferation and neuronal differentiation. MATERIALS AND METHODS: We investigated the effect of these two contrast agents on neural precursor cell proliferation and differentiation capability. We further defined the intracellular localization and labeling efficiency and analyzed labeled cells by MR. RESULTS: Cell proliferation was not affected by PLL-coated γ-Fe2O3 but was slowed down in cells labeled with CZF. Labeling efficiency, iron content and relaxation rates measured by MR were lower in cells labeled with CZF when compared to PLL-coated γ-Fe2O3. Cytoplasmic localization of both types of nanoparticles was confirmed by transmission electron microscopy. Flow cytometry and immunocytochemical analysis of specific markers expressed during neuronal differentiation did not show any significant differences between unlabeled cells or cells labeled with both magnetic nanoparticles. CONCLUSION: Our results show that cells labeled with PLL-coated γ-Fe2O3 are suitable for MR detection, did not affect the differentiation potential of iPSC-NPs and are suitable for in vivo cell therapies in experimental models of central nervous system disorders.


Assuntos
Diferenciação Celular , Feto/citologia , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Pulmão/citologia , Nanopartículas de Magnetita/química , Neurônios/citologia , Proliferação de Células , Células Cultivadas , Meios de Contraste/química , Feminino , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Lisina/química , Imageamento por Ressonância Magnética/métodos , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real
3.
Stem Cells Dev ; 23(20): 2443-54, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24836366

RESUMO

The genomic destabilization associated with the adaptation of human embryonic stem cells (hESCs) to culture conditions or the reprogramming of induced pluripotent stem cells (iPSCs) increases the risk of tumorigenesis upon the clinical use of these cells and decreases their value as a model for cell biology studies. Base excision repair (BER), a major genomic integrity maintenance mechanism, has been shown to fail during hESC adaptation. Here, we show that the increase in the mutation frequency (MF) caused by the inhibition of BER was similar to that caused by the hESC adaptation process. The increase in MF reflected the failure of DNA maintenance mechanisms and the subsequent increase in MF rather than being due solely to the accumulation of mutants over a prolonged period, as was previously suggested. The increase in the ionizing-radiation-induced MF in adapted hESCs exceeded the induced MF in nonadapted hESCs and differentiated cells. Unlike hESCs, the overall DNA maintenance in iPSCs, which was reflected by the MF, was similar to that in differentiated cells regardless of the time spent in culture and despite the upregulation of several genes responsible for genome maintenance during the reprogramming process. Taken together, our results suggest that the changes in BER activity during the long-term cultivation of hESCs increase the mutagenic burden, whereas neither reprogramming nor long-term propagation in culture changes the MF in iPSCs.


Assuntos
Loci Gênicos , Hipoxantina Fosforribosiltransferase/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Taxa de Mutação , Diferenciação Celular/efeitos da radiação , Linhagem Celular , Raios gama , Humanos , Hipoxantina Fosforribosiltransferase/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...