Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biostatistics ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002144

RESUMO

High-dimensional omics data often contain intricate and multifaceted information, resulting in the coexistence of multiple plausible sample partitions based on different subsets of selected features. Conventional clustering methods typically yield only one clustering solution, limiting their capacity to fully capture all facets of cluster structures in high-dimensional data. To address this challenge, we propose a model-based multifacet clustering (MFClust) method based on a mixture of Gaussian mixture models, where the former mixture achieves facet assignment for gene features and the latter mixture determines cluster assignment of samples. We demonstrate superior facet and cluster assignment accuracy of MFClust through simulation studies. The proposed method is applied to three transcriptomic applications from postmortem brain and lung disease studies. The result captures multifacet clustering structures associated with critical clinical variables and provides intriguing biological insights for further hypothesis generation and discovery.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38773314

RESUMO

Despite established sex differences in the prevalence and presentation of psychiatric disorders, little is known about the cellular and synaptic mechanisms that guide these differences under basal conditions. The proper function of the prefrontal cortex (PFC) is essential for the top-down regulation of motivated behaviors. The activity of the PFC is tightly controlled by parvalbumin-expressing interneurons (PV-INs), a key subpopulation of fast-spiking GABAergic cells that regulate cortical excitability through direct innervations onto the perisomatic regions of nearby pyramidal cells. Recent rodent studies have identified notable sex differences in PV-IN activity and adaptations to experiences such as binge drinking. Here, we investigated the cellular and molecular mechanisms that underlie sex-specific regulation of PFC PV-IN function. Using whole-cell patch-clamp electrophysiology and selective pharmacology, we report that PV-INs from female mice are more excitable than those from males. Moreover, we find that mGlu1 and mGlu5 metabotropic glutamate receptors regulate cell excitability, excitatory drive, and endocannabinoid signaling at PFC PV-INs in a sex-dependent manner. Genetic deletion of mGlu5 receptors from PV-expressing cells abrogates all sex differences observed in PV-IN membrane and synaptic physiology. Lastly, we report that female, but not male, PV-mGlu5-/- mice exhibit decreased voluntary drinking on an intermittent access schedule, which could be related to changes in ethanol's stimulant properties. Importantly, these studies identify mGlu1 and mGlu5 receptors as candidate signaling molecules involved in sex differences in PV-IN activity and behaviors relevant to alcohol use.

5.
Nat Commun ; 15(1): 878, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296993

RESUMO

In brain, the striatum is a heterogenous region involved in reward and goal-directed behaviors. Striatal dysfunction is linked to psychiatric disorders, including opioid use disorder (OUD). Striatal subregions are divided based on neuroanatomy, each with unique roles in OUD. In OUD, the dorsal striatum is involved in altered reward processing, formation of habits, and development of negative affect during withdrawal. Using single nuclei RNA-sequencing, we identified both canonical (e.g., dopamine receptor subtype) and less abundant cell populations (e.g., interneurons) in human dorsal striatum. Pathways related to neurodegeneration, interferon response, and DNA damage were significantly enriched in striatal neurons of individuals with OUD. DNA damage markers were also elevated in striatal neurons of opioid-exposed rhesus macaques. Sex-specific molecular differences in glial cell subtypes associated with chronic stress were found in OUD, particularly female individuals. Together, we describe different cell types in human dorsal striatum and identify cell type-specific alterations in OUD.


Assuntos
Corpo Estriado , Transtornos Relacionados ao Uso de Opioides , Masculino , Animais , Humanos , Feminino , Macaca mulatta , Corpo Estriado/metabolismo , Neurônios/metabolismo , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/metabolismo , Perfilação da Expressão Gênica
6.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38045379

RESUMO

Despite established sex differences in the prevalence and presentation of psychiatric disorders, little is known about the cellular and synaptic mechanisms that guide these differences under basal conditions. Proper function of the prefrontal cortex (PFC) is essential for the top-down regulation of motivated behaviors. Activity of the PFC is tightly controlled by parvalbumin-expressing interneurons (PV-INs), a key subpopulation of fast-spiking GABAergic cells that regulate cortical excitability through direct innervations onto the perisomatic regions of nearby pyramidal cells. Recent rodent studies have identified notable sex differences in PV-IN activity and adaptations to experiences such as binge drinking. Here, we investigated the cellular and molecular mechanisms that underlie sex-specific regulation of PFC PV-IN function. Using whole-cell patch clamp electrophysiology and selective pharmacology, we report that PV-INs from female mice are more excitable than those from males. Moreover, we find that mGlu1 and mGlu5 metabotropic glutamate receptors regulate cell excitability, excitatory drive, and endocannabinoid signaling at PFC PV-INs in a sex-dependent manner. Genetic deletion of mGlu5 receptors from PV-expressing cells abrogates all sex differences observed in PV-IN membrane and synaptic physiology. Lastly, we report that female, but not male, PV-mGlu5-/- mice exhibit decreased voluntary drinking on an intermittent access schedule, which could be related to changes in ethanol's stimulant properties. Importantly, these studies identify mGlu1 and mGlu5 receptors as candidate signaling molecules involved in sex differences in PV-IN activity and behaviors relevant for alcohol use.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38007547

RESUMO

Maternal immune activation (MIA) puts offspring at greater risk for neurodevelopmental disorders associated with impaired social behavior. While it is known that immune signaling through maternal, placental, and fetal compartments contributes to these phenotypical changes, it is unknown to what extent the stress response to illness is involved and how it can be harnessed for potential interventions. To this end, on gestational day 15, pregnant rat dams were administered the bacterial mimetic lipopolysaccharide (LPS; to induce MIA) alongside metyrapone, a clinically available 11ß-hydroxylase (11ßHSD) inhibitor used to treat hypercortisolism in pregnant, lactating, and neonatal populations. Maternal, placental, and fetal brain levels of corticosterone and placental 11ßHSD enzymes type 1 and 2 were measured 3-hrs post treatment. Offspring social behaviors were evaluated across critical phases of development. MIA was associated with increased maternal, placental, and fetal brain corticosterone concentrations that were diminished with metyrapone exposure. Metyrapone protected against reductions in placental 11ßHSD2 in males only, suggesting that less corticosterone was inactivated in female placentas. Behaviorally, metyrapone-exposure attenuated MIA-induced social disruptions in juvenile, adolescent, and adult males, while females were unaffected or performed worse. Metyrapone-exposure reversed MIA-induced transcriptional changes in monoamine-, glutamate-, and GABA-related genes in adult male ventral hippocampus, but not in females. Taken together, these findings illustrate that MIA-induced HPA responses act alongside the immune system to produce behavioral deficits. As a clinically available drug, the sex-specific benefits and constraints of metyrapone should be investigated further as a potential means of reducing neurodevelopmental risks due to gestational MIA.

8.
bioRxiv ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37873436

RESUMO

Parkinson's disease (PD) targets some dopamine (DA) neurons more than others. Sex differences offer insights, with females more protected from DA neurodegeneration. The mammalian vesicular glutamate transporter VGLUT2 and Drosophila ortholog dVGLUT have been implicated as modulators of DA neuron resilience. However, the mechanisms by which VGLUT2/dVGLUT protects DA neurons remain unknown. We discovered DA neuron dVGLUT knockdown increased mitochondrial reactive oxygen species in a sexually dimorphic manner in response to depolarization or paraquat-induced stress, males being especially affected. DA neuron dVGLUT also reduced ATP biosynthetic burden during depolarization. RNA sequencing of VGLUT+ DA neurons in mice and flies identified candidate genes that we functionally screened to further dissect VGLUT-mediated DA neuron resilience across PD models. We discovered transcription factors modulating dVGLUT-dependent DA neuroprotection and identified dj-1ß as a regulator of sex-specific DA neuron dVGLUT expression. Overall, VGLUT protects DA neurons from PD-associated degeneration by maintaining mitochondrial health.

9.
Mol Psychiatry ; 28(11): 4777-4792, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37674018

RESUMO

Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24-h cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes associated with vesicle-mediated transport and membrane trafficking in the NAc and platelet-derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.


Assuntos
Núcleo Accumbens , Transtornos Relacionados ao Uso de Opioides , Humanos , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal Dorsolateral , Proteoma/metabolismo , Ritmo Circadiano , Transtornos Relacionados ao Uso de Opioides/metabolismo , Córtex Pré-Frontal/metabolismo
10.
Stat Med ; 42(18): 3236-3258, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37265194

RESUMO

Circadian clocks are 24-h endogenous oscillators in physiological and behavioral processes. Though recent transcriptomic studies have been successful in revealing the circadian rhythmicity in gene expression, the power calculation for omics circadian analysis have not been fully explored. In this paper, we develop a statistical method, namely CircaPower, to perform power calculation for circadian pattern detection. Our theoretical framework is determined by three key factors in circadian gene detection: sample size, intrinsic effect size and sampling design. Via simulations, we systematically investigate the impact of these key factors on circadian power calculation. We not only demonstrate that CircaPower is fast and accurate, but also show its underlying cosinor model is robust against variety of violations of model assumptions. In real applications, we demonstrate the performance of CircaPower using mouse pan-tissue data and human post-mortem brain data, and illustrate how to perform circadian power calculation using mouse skeleton muscle RNA-Seq pilot as case study. Our method CircaPower has been implemented in an R package, which is made publicly available on GitHub ( https://github.com/circaPower/circaPower).


Assuntos
Ritmo Circadiano , Projetos de Pesquisa , Humanos , Animais , Camundongos , Ritmo Circadiano/genética , Perfilação da Expressão Gênica , Transcriptoma , Tamanho da Amostra
11.
bioRxiv ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37066169

RESUMO

Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24- hour cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes related to vesicle-mediated transport and membrane trafficking in the NAc and platelet derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.

12.
Int Rev Neurobiol ; 168: 311-347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36868632

RESUMO

Striking sex differences exist in presentation and incidence of several psychiatric disorders. For example, major depressive disorder is more prevalent in women than men, and women who develop alcohol use disorder progress through drinking milestones more rapidly than men. With regards to psychiatric treatment responses, women respond more favorably to selective serotonin reuptake inhibitors than men, whereas men have better outcomes when prescribed tricyclic antidepressants. Despite such well-documented biases in incidence, presentation, and treatment response, sex as a biological variable has long been neglected in preclinical and clinical research. An emerging family of druggable targets for psychiatric diseases, metabotropic glutamate (mGlu) receptors are G-protein coupled receptors broadly distributed throughout the central nervous system. mGlu receptors confer diverse neuromodulatory actions of glutamate at the levels of synaptic plasticity, neuronal excitability, and gene transcription. In this chapter, we summarize the current preclinical and clinical evidence for sex differences in mGlu receptor function. We first highlight basal sex differences in mGlu receptor expression and function and proceed to describe how gonadal hormones, notably estradiol, regulate mGlu receptor signaling. We then describe sex-specific mechanisms by which mGlu receptors differentially modulate synaptic plasticity and behavior in basal states and models relevant for disease. Finally, we discuss human research findings and highlight areas in need of further research. Taken together, this review emphasizes how mGlu receptor function and expression can differ across sex. Gaining a more complete understanding of how sex differences in mGlu receptor function contribute to psychiatric diseases will be critical in the development of novel therapeutics that are effective in all individuals.


Assuntos
Transtorno Depressivo Maior , Receptores de Glutamato Metabotrópico , Humanos , Feminino , Masculino , Caracteres Sexuais , Glutamatos , Plasticidade Neuronal
13.
PLoS Biol ; 21(1): e3001688, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693045

RESUMO

Twelve-hour (12 h) ultradian rhythms are a well-known phenomenon in coastal marine organisms. While 12 h cycles are observed in human behavior and physiology, no study has measured 12 h rhythms in the human brain. Here, we identify 12 h rhythms in transcripts that either peak at sleep/wake transitions (approximately 9 AM/PM) or static times (approximately 3 PM/AM) in the dorsolateral prefrontal cortex, a region involved in cognition. Subjects with schizophrenia (SZ) lose 12 h rhythms in genes associated with the unfolded protein response and neuronal structural maintenance. Moreover, genes involved in mitochondrial function and protein translation, which normally peak at sleep/wake transitions, peak instead at static times in SZ, suggesting suboptimal timing of these essential processes.


Assuntos
Esquizofrenia , Ritmo Ultradiano , Humanos , Córtex Pré-Frontal Dorsolateral , Esquizofrenia/genética , Sono , Encéfalo , Córtex Pré-Frontal/metabolismo
14.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36655766

RESUMO

SUMMARY: Circadian oscillations of gene expression regulate daily physiological processes, and their disruption is linked to many diseases. Circadian rhythms can be disrupted in a variety of ways, including differential phase, amplitude and rhythm fitness. Although many differential circadian biomarker detection methods have been proposed, a workflow for systematic detection of multifaceted differential circadian characteristics with accurate false positive control is not currently available. We propose a comprehensive and interactive pipeline to capture the multifaceted characteristics of differentially rhythmic biomarkers. Analysis outputs are accompanied by informative visualization and interactive exploration. The workflow is demonstrated in multiple case studies and is extensible to general omics applications. AVAILABILITY AND IMPLEMENTATION: R package, Shiny app and source code are available in GitHub (https://github.com/DiffCircaPipeline) and Zenodo (https://doi.org/10.5281/zenodo.7507989). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Periodicidade , Software , Fluxo de Trabalho
15.
Biol Psychiatry ; 93(2): 137-148, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36302706

RESUMO

BACKGROUND: Psychosis is a defining feature of schizophrenia and highly prevalent in bipolar disorder. Notably, individuals with these illnesses also have major disruptions in sleep and circadian rhythms, and disturbances of sleep and circadian rhythms can precipitate or exacerbate psychotic symptoms. Psychosis is associated with the striatum, though to our knowledge, no study to date has directly measured molecular rhythms and determined how they are altered in the striatum of subjects with psychosis. METHODS: We performed RNA sequencing and both differential expression and rhythmicity analyses to investigate diurnal alterations in gene expression in human postmortem striatal subregions (nucleus accumbens, caudate, and putamen) in subjects with psychosis (n = 36) relative to unaffected comparison subjects (n = 36). RESULTS: Across regions, we found differential expression of immune-related transcripts and a substantial loss of rhythmicity in core circadian clock genes in subjects with psychosis. In the nucleus accumbens, mitochondrial-related transcripts had decreased expression in subjects with psychosis, but only in those who died at night. Additionally, we found a loss of rhythmicity in small nucleolar RNAs and a gain of rhythmicity in glutamatergic signaling in the nucleus accumbens of subjects with psychosis. Between-region comparisons indicated that rhythmicity in the caudate and putamen was far more similar in subjects with psychosis than in matched comparison subjects. CONCLUSIONS: Together, these findings reveal differential and rhythmic gene expression differences across the striatum that may contribute to striatal dysfunction and psychosis in psychotic disorders.


Assuntos
Transtornos Psicóticos , Humanos , Transtornos Psicóticos/genética , Ritmo Circadiano/genética , Corpo Estriado , Putamen , Expressão Gênica
16.
Genes Brain Behav ; 21(7): e12829, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36053258

RESUMO

Opioids like fentanyl remain the mainstay treatment for chronic pain. Unfortunately, opioid's high dependence liability has led to the current opioid crisis, in part, because of side-effects that develop during long-term use, including analgesic tolerance and physical dependence. Both tolerance and dependence to opioids may lead to escalation of required doses to achieve previous therapeutic efficacy. Additionally, altered sleep and circadian rhythms are common in people on opioid therapy. Opioids impact sleep and circadian rhythms, while disruptions to sleep and circadian rhythms likely mediate the effects of opioids. However, the mechanisms underlying these bidirectional relationships between circadian rhythms and opioids remain largely unknown. The circadian protein, neuronal PAS domain protein 2 (NPAS2), regulates circadian-dependent gene transcription in structure of the central nervous system that modulate opioids and pain. Here, male and female wild-type and NPAS2-deficient (NPAS2-/-) mice were used to investigate the role of NPAS2 in fentanyl analgesia, tolerance, hyperalgesia and physical dependence. Overall, thermal pain thresholds, acute analgesia and tolerance to a fixed dose of fentanyl were largely similar between wild-type and NPAS2-/- mice. However, female NPAS2-/- exhibited augmented analgesic tolerance and significantly more behavioral symptoms of physical dependence to fentanyl. Only male NPAS2-/- mice had increased fentanyl-induced hypersensitivity, when compared with wild-type males. Together, our findings suggest sex-specific effects of NPAS2 signaling in the regulation of fentanyl-induced tolerance, hyperalgesia and dependence.


Assuntos
Analgesia , Analgésicos Opioides , Analgésicos/farmacologia , Analgésicos Opioides/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Tolerância a Medicamentos/genética , Feminino , Fentanila , Humanos , Hiperalgesia , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Dor/tratamento farmacológico , Fatores de Transcrição
17.
Front Psychiatry ; 13: 945548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090351

RESUMO

Microglia are resident macrophages of the brain, performing roles related to brain homeostasis, including modulation of synapses, trophic support, phagocytosis of apoptotic cells and debris, as well as brain protection and repair. Studies assessing morphological and transcriptional features of microglia found regional differences as well as sex differences in some investigated brain regions. However, markers used to isolate microglia in many previous studies are not expressed exclusively by microglia or cannot be used to identify and isolate microglia in all contexts. Here, fluorescent activated cell sorting was used to isolate cells expressing the microglia-specific marker TMEM119 from prefrontal cortex (PFC), striatum, and midbrain in mice. RNA-sequencing was used to assess the transcriptional profile of microglia, focusing on brain region and sex differences. We found striking brain region differences in microglia-specific transcript expression. Most notable was the distinct transcriptional profile of midbrain microglia, with enrichment for pathways related to immune function; these midbrain microglia exhibited a profile similar to disease-associated or immune-surveillant microglia. Transcripts more highly expressed in PFC isolated microglia were enriched for synapse-related pathways while microglia isolated from the striatum were enriched for pathways related to microtubule polymerization. We also found evidence for a gradient of expression of microglia-specific transcripts across the rostral-to-caudal axes of the brain, with microglia extracted from the striatum exhibiting a transcriptional profile intermediate between that of the PFC and midbrain. We also found sex differences in expression of microglia-specific transcripts in all 3 brain regions, with many selenium-related transcripts more highly expressed in females across brain regions. These results suggest that the transcriptional profile of microglia varies between brain regions under homeostatic conditions, suggesting that microglia perform diverse roles in different brain regions and even based on sex.

18.
Transl Psychiatry ; 12(1): 123, 2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35347109

RESUMO

Severe and persistent disruptions to sleep and circadian rhythms are common in people with opioid use disorder (OUD). Preclinical evidence suggests altered molecular rhythms in the brain modulate opioid reward and relapse. However, whether molecular rhythms are disrupted in the brains of people with OUD remained an open question, critical to understanding the role of circadian rhythms in opioid addiction. Using subjects' times of death as a marker of time of day, we investigated transcriptional rhythms in the brains of subjects with OUD compared to unaffected comparison subjects. We discovered rhythmic transcripts in both the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc), key brain areas involved in OUD, that were largely distinct between OUD and unaffected subjects. Fewer rhythmic transcripts were identified in DLPFC of subjects with OUD compared to unaffected subjects, whereas in the NAc, nearly double the number of rhythmic transcripts was identified in subjects with OUD. In NAc of subjects with OUD, rhythmic transcripts peaked either in the evening or near sunrise, and were associated with an opioid, dopamine, and GABAergic neurotransmission. Associations with altered neurotransmission in NAc were further supported by co-expression network analysis which identified OUD-specific modules enriched for transcripts involved in dopamine, GABA, and glutamatergic synaptic functions. Additionally, rhythmic transcripts in DLPFC and NAc of subjects with OUD were enriched for genomic loci associated with sleep-related GWAS traits, including sleep duration and insomnia. Collectively, our findings connect transcriptional rhythm changes in opioidergic, dopaminergic, GABAergic signaling in the human brain to sleep-related traits in opioid addiction.


Assuntos
Núcleo Accumbens , Transtornos Relacionados ao Uso de Opioides , Analgésicos Opioides , Encéfalo , Humanos , Transtornos Relacionados ao Uso de Opioides/genética , Córtex Pré-Frontal
19.
Biol Psychiatry ; 91(1): 14-24, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648716

RESUMO

Major depressive disorder (MDD) is a leading cause of disability, affecting more than 300 million people worldwide. We first review the well-known sex difference in incidence of MDD, with women being twice as likely to be diagnosed as men, and briefly summarize how the impact of MDD varies between men and women, with sex differences in symptoms, severity, and antidepressant drug response. We then attempt to deconstruct the biological bases for MDD and discuss implications for sex differences research. Next, we review findings from human postmortem studies, both from selected candidate gene studies and from well-powered, unbiased transcriptomics studies, which suggest distinct, and possibly opposite, molecular changes in the brains of depressed men and women. We then discuss inherent challenges of research on the human postmortem brain and suggest paths forward that rely on thoughtful cohort design. Although studies indicate that circulating gonadal hormones might underlie the observed sex differences in MDD, we discuss how additional sex-specific factors, such as genetic sex and developmental exposure to gonadal hormones, may also contribute to altered vulnerability, and we highlight various nuances that we believe should be considered when determining mechanisms underlying observed sex differences. Altogether, this review highlights not only how various sex-specific factors might influence susceptibility or resilience to depression, but also how those sex-specific factors might result in divergent pathology in men and women.


Assuntos
Transtorno Depressivo Maior , Fatores Sexuais , Transcriptoma , Antidepressivos/uso terapêutico , Depressão , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Feminino , Humanos , Masculino
20.
Biol Psychiatry ; 91(1): 152-162, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33934884

RESUMO

BACKGROUND: Diurnal rhythms in gene expression have been detected in the human brain. Previous studies found that males and females exhibit 24-hour rhythms in known circadian genes, with earlier peak expression in females. Whether there are sex differences in large-scale transcriptional rhythms in the cortex that align with observed sex differences in physiological and behavioral rhythms is currently unknown. METHODS: Diurnal rhythmicity of gene expression was determined for males and females using RNA sequencing data from human postmortem dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). Sex differences among rhythmic genes were determined using significance cutoffs, threshold-free analyses, and R2 difference. Phase concordance was assessed across the DLPFC and ACC for males and females. Pathway and transcription factor analyses were also conducted on significantly rhythmic genes. RESULTS: Canonical circadian genes had diurnal rhythms in both sexes with similar amplitude and phase. When analyses were expanded to the entire transcriptome, significant sex differences in transcriptional rhythms emerged. There were nearly twice as many rhythmic transcripts in the DLPFC in males and nearly 4 times as many rhythmic transcripts in the ACC in females. Results suggest a diurnal rhythm in synaptic transmission specific to the ACC in females (e.g., GABAergic [gamma-aminobutyric acidergic] and cholinergic neurotransmission). For males, there was phase concordance between the DLPFC and ACC, while phase asynchrony was found in females. CONCLUSIONS: There are robust sex differences in molecular rhythms of genes in the DLPFC and ACC, providing potential mechanistic insights into how neurotransmission and synaptic function are modulated in a circadian-dependent and sex-specific manner.


Assuntos
Córtex Pré-Frontal Dorsolateral , Caracteres Sexuais , Ritmo Circadiano/genética , Feminino , Humanos , Masculino , Análise de Sequência de RNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...