Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 72(6): 1183-1200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477581

RESUMO

Barrier-forming olfactory glia cells, termed sustentacular cells, play important roles for immune defense of the olfactory mucosa, for example as entry sites for SARS-CoV-2 and subsequent development of inflammation-induced smell loss. Here we demonstrate that sustentacular cells express ACKR3, a chemokine receptor that functions both as a scavenger of the chemokine CXCL12 and as an activator of alternative signaling pathways. Differential gene expression analysis of bulk RNA sequencing data obtained from WT and ACKR3 conditional knockout mice revealed upregulation of genes involved in immune defense. To map the regulated genes to the different cell types of the olfactory mucosa, we employed biocomputational methods utilizing a single-cell reference atlas. Transcriptome analysis, PCR and immunofluorescence identified up-regulation of NF-κB-related genes, known to amplify inflammatory signaling and to facilitate leukocyte transmigration, in the gliogenic lineage. Accordingly, we found a marked increase in leukocyte-expressed genes and confirmed leukocyte infiltration into the olfactory mucosa. In addition, lack of ACKR3 led to enhanced expression and secretion of early mediators of immune defense by Bowman's glands. As a result, the number of apoptotic cells in the epithelium was decreased. In conclusion, our research underlines the importance of sustentacular cells in immune defense of the olfactory mucosa. Moreover, it identifies ACKR3, a druggable G protein-coupled receptor, as a promising target for modulation of inflammation-associated anosmia.


Assuntos
Inflamação , Mucosa Olfatória , Animais , Camundongos , Quimiocina CXCL12/metabolismo , Perfilação da Expressão Gênica , Inflamação/metabolismo , Neuroglia/metabolismo , Mucosa Olfatória/metabolismo
2.
BMC Biol ; 21(1): 292, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110903

RESUMO

BACKGROUND: Olfactory sensory neurons detect odourants via multiple long cilia that protrude from their dendritic endings. The G protein-coupled receptor GPRC5C was identified as part of the olfactory ciliary membrane proteome, but its function and localization is unknown. RESULTS: High-resolution confocal and electron microscopy revealed that GPRC5C is located at the base of sensory cilia in olfactory neurons, but not in primary cilia of immature neurons or stem cells. Additionally, GPRC5C localization in sensory cilia parallels cilia formation and follows the formation of the basal body. In closer examination, GPRC5C was found in the ciliary transition zone. GPRC5C deficiency altered the structure of sensory cilia and increased ciliary layer thickness. However, primary cilia were unaffected. Olfactory sensory neurons from Gprc5c-deficient mice exhibited altered localization of olfactory signalling cascade proteins, and of ciliary phosphatidylinositol-4,5-bisphosphat. Sensory neurons also exhibited increased neuronal activity as well as altered mitochondrial morphology, and knockout mice had an improved ability to detect food pellets based on smell. CONCLUSIONS: Our study shows that GPRC5C regulates olfactory cilia composition and length, thereby controlling odour perception.


Assuntos
Cílios , Neurônios Receptores Olfatórios , Receptores Acoplados a Proteínas G , Animais , Camundongos , Cílios/metabolismo , Camundongos Knockout , Odorantes , Neurônios Receptores Olfatórios/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Olfato/fisiologia
3.
Cells ; 12(17)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681896

RESUMO

Olfaction depends on lifelong production of sensory neurons from CXCR4 expressing neurogenic stem cells. Signaling by CXCR4 depends on the concentration of CXCL12, CXCR4's principal ligand. Here, we use several genetic models to investigate how regulation of CXCL12 in the olfactory stem cell niche adjusts neurogenesis. We identify subepithelial tissue and sustentacular cells, the olfactory glia, as main CXCL12 sources. Lamina propria-derived CXCL12 accumulates on quiescent gliogenic stem cells via heparan sulfate. Additionally, CXCL12 is secreted within the olfactory epithelium by sustentacular cells. Both sustentacular-cell-derived and lamina propria-derived CXCL12 are required for CXCR4 activation. ACKR3, a high-affinity CXCL12 scavenger, is expressed by mature glial cells and titrates CXCL12. The accurate adjustment of CXCL12 by ACKR3 is critical for CXCR4-dependent proliferation of neuronal stem cells and for proper lineage progression. Overall, these findings establish precise regulation of CXCL12 by glia cells as a prerequisite for CXCR4-dependent neurogenesis and identify ACKR3 as a scavenger influencing tissue homeostasis beyond embryonic development.


Assuntos
Neuroglia , Olfato , Transporte Biológico , Quimiocina CXCL12 , Neurogênese , Células Receptoras Sensoriais
4.
Stem Cells ; 39(5): 617-635, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33470495

RESUMO

The olfactory epithelium (OE) possesses unique lifelong neuroregenerative capacities and undergoes constitutive neurogenesis throughout mammalian lifespan. Two populations of stem cells, frequently dividing globose basal cells (GBCs) and quiescent horizontal basal cells (HBCs), readily replace olfactory neurons throughout lifetime. Although lineage commitment and neuronal differentiation of stem cells has already been described in terms of transcription factor expression, little is known about external factors balancing between differentiation and self-renewal. We show here that expression of the CXC-motif chemokine receptor 4 (CXCR4) distinguishes both types of stem cells. Extensive colocalization analysis revealed exclusive expression of CXCR4 in proliferating GBCs and their neuronal progenies. Moreover, only neuronal lineage cells were derived from CXCR4-CreER-tdTomato reporter mice in the OE. Furthermore, Cre-tdTomato mice specific for HBCs (Nestin+ and Cytokeratin14+) did not reduce CXCR4 expression when bred to mice bearing floxed CXCR4 alleles, and did not show labeling of the neuronal cells. CXCR4 and its ligand CXCL12 were markedly upregulated upon induction of GBC proliferation during injury-induced regeneration. in vivo overexpression of CXCL12 did downregulate CXCR4 levels, which results in reduced GBC maintenance and neuronal differentiation. We proved that these effects were caused by CXCR4 downregulation rather than over-activation by showing that the phenotypes of CXCL12-overexpressing mice were highly similar to the phenotypes of CXCR4 knockout mice. Our results demonstrate functional CXCR4 signaling in GBCs regulates cell cycle exit and neural differentiation. We propose that CXCR4/CXCL12 signaling is an essential regulator of olfactory neurogenesis and provide new insights into the dynamics of neurogenesis in the OE.


Assuntos
Quimiocina CXCL12/genética , Regeneração Nervosa/genética , Neurogênese/genética , Nervo Olfatório/crescimento & desenvolvimento , Receptores CXCR4/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Queratina-14/genética , Camundongos , Camundongos Knockout , Nestina/genética , Células-Tronco Neurais/citologia , Neurônios/citologia , Mucosa Olfatória/crescimento & desenvolvimento , Mucosa Olfatória/lesões , Nervo Olfatório/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...