Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 81(12): 2488-2500, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32857737

RESUMO

This paper offers a feasible solution for the treatment of membrane concentrate produced from the textile industry, using the Fenton, Advanced Fenton (AF), ozonation and hydrodynamic cavitation (HC) and combination of these processes. The study investigated the optimum oxidant and catalyst concentrations, optimum operational conditions and comparison of these processes. The potential formation of chlorinated organic compounds after oxidation of membrane concentrate was also investigated by analyzing total organic halogen (TOX) and polychlorinated biphenyl (PCBs). Also, toxicity analysis was performed with Vibrio fischeri photobacteria to identify the production possibility of oxidation intermediates that are more toxic and difficult to treat than the targeted contaminants. Maximum removal efficiencies in chemical oxygen demand (COD) and color were 18.8% and 60.7% respectively using HC alone at a cavitation number (CN) of 0.1. Maximum COD, total organic carbon (TOC), and color removal efficiency at molar concentrations of 175 mM H2O2 and 35 mM Fe2+ and pH 3 after 30 min was 87.1, 80.8 and 99%. Combined HC with Fenton showed the highest removal efficiency in terms of COD, TOC, and color. It was also stated that the use of high oxidant concentrations masks the synergistic effect of HC on Fenton processes due to the scavenging effect.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Análise da Demanda Biológica de Oxigênio , Oxirredução , Indústria Têxtil
2.
Environ Technol ; 41(4): 440-449, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30010517

RESUMO

A lab-scale electrodialysis (ED) which consisted of 11 pieces of cation-exchange membranes and 10 pieces of anion-exchange membranes was used to treat concentrated brine of Reverse osmosis (RO) membrane. The effect of operating parameters such as applied voltage, flowrate, and operating mode was investigated to measure the performance of a lab-scale ED. Three different voltages (5, 10, and 15 V) and flowrates (20, 30, and 40 L/h) were applied in order to optimize the operating conditions of the ED system. The maximum TDS removal efficiencies were 85%, 97%, and 98% for 5, 10, and 15 V, respectively. It was concluded that the desalination efficiencies were almost the same at flowrates values of 20, 30 and 40 L/h. The TDS concentration of the treated brine in the concentrate compartment rises to the highest value of 25,400 mg/L with desalination rate of 92.5% after five cycle operation. Moreover, the desalinated brine can be used as fresh water.


Assuntos
Purificação da Água , Ânions , Filtração , Membranas Artificiais , Osmose
3.
Environ Technol ; 38(21): 2668-2676, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27967603

RESUMO

It has been recognized by the whole world that textile industry which produce large amounts of wastewater with strong color and toxic organic compounds is a major problematical industry requiring effective treatment solutions. In this study, reverse osmosis (RO) membranes were tested on biologically treated real dye bath wastewater with and without pretreatment by nanofiltration (NF) membrane to recovery. Also membrane fouling and reuse potential of membranes were investigated by multiple filtrations. Obtained results showed that only NF is not suitable to produce enough quality to reuse the wastewater in a textile industry as process water while RO provide successfully enough permeate quality. The results recommend that integrated NF/RO membrane process is able to reduce membrane fouling and allow long-term operation for real dye bath wastewater.


Assuntos
Corantes , Eliminação de Resíduos Líquidos , Purificação da Água , Membranas Artificiais , Osmose , Águas Residuárias , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA