Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 38(12): 3001-3012, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29079689

RESUMO

BLA neurons serve a well-accepted role in fear conditioning and fear extinction. However, the specific learning processes related to their activity at different times during learning remain poorly understood. We addressed this using behavioral tasks isolating distinct aspects of fear learning in male rats. We show that brief optogenetic inhibition of BLA neurons around moments of aversive reinforcement or nonreinforcement causes reductions in the salience of conditioned stimuli, rendering these stimuli less able to be learned about and less able to control fear or safety behaviors. This salience reduction was stimulus-specific, long-lasting, and specific to learning about, or responding to, the same aversive outcome, precisely the goals of therapeutic interventions in human anxiety disorders. Our findings identify a core learning process disrupted by brief BLA optogenetic inhibition. They show that a primary function of the unconditioned stimulus-evoked activity of BLA neurons is to maintain the salience of conditioned stimuli that precede it. This maintenance of salience is a necessary precursor for these stimuli to gain and maintain control over fear and safety behavior.SIGNIFICANCE STATEMENT The amygdala is essential for learning to fear and learning to reduce fear. However, the specific roles served by activity of different amygdala neurons at different times during learning is poorly understood. We used behavioral tasks isolating distinct aspects of learning in rats to show that brief optogenetic inhibition of BLA neurons around moments of reinforcement or nonreinforcement disrupts maintenance of conditioned stimulus salience. This causes a stimulus-specific and long-lasting deficit in the ability of the conditioned stimulus to be learned about or control fear responses. These consequences are the precisely goals of therapeutic interventions in human anxiety disorders. Our findings identify a core learning process disrupted by brief BLA optogenetic inhibition.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Medo/fisiologia , Aprendizagem/fisiologia , Neurônios/fisiologia , Animais , Condicionamento Clássico , Masculino , Ratos , Ratos Sprague-Dawley
2.
J Neurosci ; 36(2): 385-95, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758831

RESUMO

Basolateral amygdala (BLA) is critical for fear learning, and its heightened activation is widely thought to underpin a variety of anxiety disorders. Here we used chemogenetic techniques in rats to study the consequences of heightened BLA activation for fear learning and memory, and to specifically identify a mechanism linking increased activity of BLA glutamatergic neurons to aberrant fear. We expressed the excitatory hM3Dq DREADD in rat BLA glutamatergic neurons and showed that CNO acted selectively to increase their activity, depolarizing these neurons and increasing their firing rates. This chemogenetic excitation of BLA glutamatergic neurons had no effect on the acquisition of simple fear learning, regardless of whether this learning led to a weak or strong fear memory. However, in an associative blocking task, chemogenetic excitation of BLA glutamatergic neurons yielded significant learning to a blocked conditioned stimulus, which otherwise should not have been learned about. Moreover, in an overexpectation task, chemogenetic manipulation of BLA glutamatergic neurons prevented use of negative prediction error to reduce fear learning, leading to significant impairments in fear inhibition. These effects were not attributable to the chemogenetic manipulation enhancing arousal, increasing asymptotic levels of fear learning or fear memory consolidation. Instead, chemogenetic excitation of BLA glutamatergic neurons disrupted use of prediction error to regulate fear learning. SIGNIFICANCE STATEMENT: Several neuropsychiatric disorders are characterized by heightened activation of the amygdala. This heightened activation has been hypothesized to underlie increased emotional reactivity, fear over generalization, and deficits in fear inhibition. Yet the mechanisms linking heightened amygdala activation to heightened emotional learning are elusive. Here we combined chemogenetic excitation of rat basolateral amygdala glutamatergic neurons with a variety of behavioral approaches to show that, although simple fear learning is unaffected, the use of prediction error to regulate this learning is profoundly disrupted, leading to formation of inappropriate fear associations and impaired fear inhibition.


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Condicionamento Psicológico/fisiologia , Medo , Neurônios/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Condicionamento Psicológico/efeitos dos fármacos , Dependovirus/genética , Eletrochoque/efeitos adversos , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Medo/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Humanos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M3/genética , Receptores de Droga/genética , Receptores de Droga/metabolismo
3.
Front Behav Neurosci ; 8: 148, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24822042

RESUMO

Fear learning occurs in response to positive prediction error, when the expected outcome of a conditioning trial exceeds that predicted by the conditioned stimuli present. This role for error in Pavlovian association formation is best exemplified by the phenomenon of associative blocking, whereby prior fear conditioning of conditioned stimulus (CS) A is able to prevent learning to CSB when they are conditioned in compound. The midline and intralaminar thalamic nuclei (MIT) are well-placed to contribute to fear prediction error because they receive extensive projections from the midbrain periaqueductal gray-which has a key role in fear prediction error-and project extensively to prefrontal cortex and amygdala. Here we used an associative blocking design to study the role of MIT in fear learning. In Stage I rats were trained to fear CSA via pairings with shock. In Stage II rats received compound fear conditioning of CSAB paired with shock. On test, rats that received Stage I training expressed less fear to CSB relative to control rats that did not receive this training. Microinjection of bupivacaine into MIT prior to Stage II training had no effect on the expression of fear during Stage II and had no effect on fear learning in controls, but prevented associative blocking and so enabled fear learning to CSB. These results show an important role for MIT in predictive fear learning and are discussed with reference to previous findings implicating the midline and posterior intralaminar thalamus in fear learning and fear responding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...