Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Sci Rep ; 14(1): 15248, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956162

RESUMO

Occipital nerve decompression is effective in reducing headache symptoms in select patients with migraine and occipital neuralgia. Eligibility for surgery relies on subjective symptoms and responses to nerve blocks and Onabotulinum toxin A (Botox) injections. No validated objective method exists for detecting occipital headache pathologies. The purpose of the study is to explore the potential of high-resolution Magnetic Resolution Imaging (MRI) in identifying greater occipital nerve (GON) pathologies in chronic headache patients. The MRI protocol included three sequences targeting fat-suppressed fluid-sensitive T2-weighted signals. Visualization of the GON involved generating 2-D image slices with sequential rotation to track the nerve course. Twelve patients underwent pre-surgical MRI assessment. MRI identified four main pathologies that were validated against intra-operative examination: GON entanglement by the occipital artery, increased nerve thickness and hyperintensity suggesting inflammation compared to the non-symptomatic contralateral side, early GON branching with rejoining at a distal point, and a connection between the GON and the lesser occipital nerve. MRI possesses the ability to visualize the GON and identify suspected trigger points associated with headache symptoms. This case series highlights MRI's potential to provide objective evidence of nerve pathology. Further research is warranted to establish MRI as a gold standard for diagnosing extracranial contributors in headaches.


Assuntos
Descompressão Cirúrgica , Cefaleia , Imageamento por Ressonância Magnética , Nervos Espinhais , Humanos , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Cefaleia/diagnóstico por imagem , Descompressão Cirúrgica/métodos , Nervos Espinhais/diagnóstico por imagem , Nervos Espinhais/cirurgia , Idoso , Cuidados Pré-Operatórios
2.
IEEE ASME Trans Mechatron ; 29(3): 1714-1725, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895598

RESUMO

Magnetic resonance (MR) conditional actuators and encoders are the key components for MR-guided robotic systems. In this article, we present the modeling and control of our MR-safe pneumatic radial inflow motor and encoder. A comprehensive model is developed that considers the primary dynamic elements of the system, including: 1) motor dynamics, 2) pneumatic transmission line dynamics, and 3) valve dynamics. After model validation, we present a simplified third order model that facilitates design of a first order sliding mode controller (TO-SMC). Finally, the motor hardware is tested in a 7T MRI. No image distortion or artifacts were observed. We posit the MR-safe motor and dynamic model will lower the entry barriers for researchers interested in MR-guided robots and promote wider adoption of MR-guided robotic systems.

3.
IEEE Trans Med Robot Bionics ; 6(2): 577-588, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38911181

RESUMO

Stereotactic neurosurgery is a well-established surgical technique for navigation and guidance during treatment of intracranial pathologies. Intracerebral hemorrhage (ICH) is an example of various neurosurgical conditions that can benefit from stereotactic neurosurgery. As a part of our ongoing work toward real-time MR-guided ICH evacuation, we aim to address an unmet clinical need for a skull-mounted frameless stereotactic aiming device that can be used with minimally invasive robotic systems for MR-guided interventions. In this paper, we present NICE-Aiming, a Neurosurgical, Interventional, Configurable device for Effective-Aiming in MR-guided robotic neurosurgical interventions. A kinematic model was developed and the system was used with a concentric tube robot (CTR) for ICH evacuation in (i) a skull phantom and (ii) in the first ever reported ex vivo CTR ICH evacuation using an ex vivo ovine head. The NICE-Aiming prototype provided a tip accuracy of 1.41±0.35 mm in free-space. In the MR-guided gel phantom experiment, the targeting accuracy was 2.07±0.42 mm and the residual hematoma volume was 12.87 mL (24.32% of the original volume). In the MR-guided ex vivo ovine head experiment, the targeting accuracy was 2.48±0.48 mm and the residual hematoma volume was 1.42 mL (25.08% of the original volume).

4.
Ann Biomed Eng ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634953

RESUMO

MR-guided microwave ablation (MWA) has proven effective in treating hepatocellular carcinoma (HCC) with small-sized tumors, but the state-of-the-art technique suffers from sub-optimal workflow due to the limited accuracy provided by the manual needle insertions. This paper presents a compact body-mounted MR-conditional robot that can operate in closed-bore MR scanners for accurate needle guidance. The robotic platform consists of two stacked Cartesian XY stages, each with two degrees of freedom, that facilitate needle insertion pose control. The robot is actuated using 3D-printed pneumatic turbines with MR-conditional bevel gear transmission systems. Pneumatic valves and control mechatronics are located inside the MRI control room and are connected to the robot with pneumatic transmission lines and optical fibers. Free-space experiments indicated robot-assisted needle insertion error of 2.6 ± 1.3 mm at an insertion depth of 80 mm. The MR-guided phantom studies were conducted to verify the MR-conditionality and targeting performance of the robot. Future work will focus on the system optimization and validations in animal trials.

5.
Magn Reson Med ; 91(3): 886-895, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38010083

RESUMO

PURPOSE: Application of highly selective editing RF pulses provides a means of minimizing co-editing of contaminants in J-difference MRS (MEGA), but it causes reduction in editing yield. We examined the flip angles (FAs) of narrow-band editing pulses to maximize the lactate edited signal with minimal co-editing of threonine. METHODS: The effect of editing-pulse FA on the editing performance was examined, with numerical and phantom analyses, for bandwidths of 17.6-300 Hz in MEGA-PRESS editing of lactate at 3T. The FA and envelope of 46 ms Gaussian editing pulses were tailored to maximize the lactate edited signal at 1.3 ppm and minimize co-editing of threonine. The optimized editing-pulse FA MEGA scheme was tested in brain tumor patients. RESULTS: Simulation and phantom data indicated that the optimum FA of MEGA editing pulses is progressively larger than 180° as the editing-pulse bandwidth decreases. For 46 ms long 17.6 Hz bandwidth Gaussian pulses and other given sequence parameters, the lactate edited signal was maximum at the first and second editing-pulse FAs of 241° and 249°, respectively. The edit-on and difference-edited lactate peak areas of the optimized FA MEGA were greater by 43% and 25% compared to the 180°-FA MEGA, respectively. In-vivo data confirmed the simulation and phantom results. The lesions of the brain tumor patients showed elevated lactate and physiological levels of threonine. CONCLUSION: The lactate MEGA editing yield is significantly increased with editing-pulse FA much larger than 180° when the editing-pulse bandwidth is comparable to the lactate quartet frequency width.


Assuntos
Neoplasias Encefálicas , Ácido Láctico , Humanos , Espectroscopia de Ressonância Magnética/métodos , Imagens de Fantasmas , Neoplasias Encefálicas/diagnóstico por imagem , Treonina
6.
Int Symp Med Robot ; 20232023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38073863

RESUMO

Actuators and encoders used in MR-guided robotic interventions are subject to strict requirements to ensure patient safety and MR imaging quality. In this paper, we present an open source computer aided design (CAD) of our MR-safe Pneumatic Radial Inflow Motor and Encoder (PRIME). PRIME is a parametrically designed motor that enables scalability based on torque and speed requirements for a wide range of MR-guided robotic procedures. The design consists of five primary modifiable parameters that define the entire motor geometry. All components of the motor are either 3D printed or available off-the-shelf. Quadrature encoding is achieved using a 3D printed housing and four fiber optic cables. Benchtop experiments were performed to validate the performance of the proposed design. To the best of our knowledge, this is the first open source MR-safe pneumatic motor and encoder in the field. We aim to share the design and manufacturing guidelines to lower the entry barriers for researchers interested in MR-guided robotics.

7.
IEEE Trans Biomed Eng ; 70(10): 2895-2904, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37074885

RESUMO

OBJECTIVE: We aim to develop and evaluate an MR-conditional concentric tube robot for intracerebral hemorrhage (ICH) evacuation. METHODS: We fabricated the concentric tube robot hardware with plastic tubes and customized pneumatic motors. The robot kinematic model was developed using a discretized piece-wise constant curvature (D-PCC) approach to account for variable curvature along the tube shape, and tube mechanics model was used to compensate torsional deflection of the inner tube. The MR-safe pneumatic motors were controlled using a variable gain PID algorithm. The robot hardware was validated in a series of bench-top and MRI experiments, and the robot's evacuation efficacy was tested in MR-guided phantom trials. RESULTS: The pneumatic motor was able to achieve a rotational accuracy of 0.32°±0.30° with the proposed variable gain PID control algorithm. The kinematic model provided a positional accuracy of the tube tip of 1.39 ± 0.54 mm. The robot was able to evacuate an initial 38.36 mL clot, leaving a residual hematoma of 8.14 mL after 5 minutes, well below the 15 mL guideline suggesting good post-ICH evacuation clinical outcomes. CONCLUSION: This robotic platform provides an effective method for MR-guided ICH evacuation. SIGNIFICANCE: ICH evacuation is feasible under MRI guidance using a plastic concentric tube, indicating potential feasibility in future live animal studies.


Assuntos
Robótica , Animais , Hemorragia Cerebral/diagnóstico por imagem , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos
8.
Magn Reson Med ; 89(6): 2227-2241, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36708203

RESUMO

PURPOSE: To achieve high-resolution multishot echo-planar imaging (EPI) for functional MRI (fMRI) with reduced sensitivity to in-plane motion and between-shot phase variations. METHODS: Two-dimensional radiofrequency pulses were incorporated in a multishot EPI sequence at 7T which selectively excited a set of in-plane bands (shutters) in the phase encoding direction, which moved between shots to cover the entire slice. A phase- and motion-corrected reconstruction was implemented for the acquisition. Brain imaging experiments were performed with instructed motion to evaluate image quality for conventional multishot and shuttered EPI. Temporal stability was assessed in three subjects by quantifying temporal SNR (tSNR) and artifact levels, and fMRI activation experiments using visual stimulation were performed to assess the strength and distribution of activation, using both conventional multishot and shuttered EPI. RESULTS: In the instructed motion experiment, ghosting was lower in shuttered EPI images without or with corrections and image quality metrics were improved with motion correction. tSNR was improved by phase correction in both conventional multishot and shuttered EPI and the acquisitions had similar tSNR without and with phase correction. However, while phase correction was necessary to maximize tSNR in conventional multishot EPI, it also increased intermittent ghosting, but did not increase intermittent ghosting in shuttered EPI. Phase correction increased activation strength in both conventional multishot and shuttered EPI, but caused increased spurious activation outside the brain and in frontal brain regions in conventional multishot EPI. CONCLUSION: Shuttered EPI supports multishot segmented EPI acquisitions with lower sensitivity to artifacts from motion for high-resolution fMRI.


Assuntos
Algoritmos , Imagem Ecoplanar , Humanos , Imagem Ecoplanar/métodos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Movimento (Física) , Artefatos , Processamento de Imagem Assistida por Computador/métodos
9.
Indian J Anaesth ; 67(Suppl 4): S205-S207, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38187967
11.
IEEE Trans Biomed Eng ; 69(10): 3243-3252, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35404807

RESUMO

OBJECTIVE: High-density multi-coil arrays are desirable in MRI because they provide high signal-to-noise ratios (SNR), enable highly accelerated parallel imaging, and provide more uniform transmit fields at high fields. For high-density arrays such as a head array with 16 elements in a row, popular dipole antennas and microstrip transmission line (also referred to as "MTL") resonators both have severe coupling issues. METHODS: In this work, we show that dipoles and MTLs have naturally low coupling and propose a novel array configuration in which they are interleaved. We first show the electromagnetic (EM) coupling between a single dipole and a single MTL across different separations in bench tests. Then we validate and analyze this through EM simulations. Finally, we construct a 16-channel mixed dipole and MTL array and evaluate its performance on the bench and through MRI experiments. RESULTS: Without any decoupling treatments, the worst coupling between a dipole and an MTL was only -15.8 dB when their center-to-center distance was 4.7 cm (versus -5.4 dB for two dipole antennas and -6.0 dB for two MTL resonators). Even in a dense 16-channel mixed array, the inter-element isolation among all elements was better than -14 dB. CONCLUSION: This study reveals, analyzes, and validates a novel finding that the popular dipole antennas and MTL resonators used in ultrahigh field MRI have naturally low coupling. SIGNIFICANCE: These findings will simplify the construction of high-density arrays, enable new applications, and benefit imaging performance in ultrahigh field MRI.


Assuntos
Imageamento por Ressonância Magnética , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Razão Sinal-Ruído
12.
Indian J Anaesth ; 66(1): 8-14, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35309028

RESUMO

The competency-based medical education (CBME) curriculum for undergraduate medical education recently rolled out by the regulating body gives the much-needed importance to the subject of Anaesthesiology, which in the earlier traditional curriculum was unappreciated. The contributions of the Anaesthesiology faculty to the new curriculum include the conduct of basic life support sessions in the foundation course followed by the teaching of 46 stand-alone, subject-specific topics and 17 integrated topics in the next 54 months. The anaesthesiologists will play a vital role in sensitising the 1st-year students to the hospital environment during early clinical exposure sessions by facilitating their visits to operation theatres and critical care areas. Anaesthesiologists are the leaders in the establishment and maintenance of the skill laboratories and in imparting simulation-based training for teaching crisis management, patient management in pandemics and lifesaving skills; nevertheless, there is a definite scope for further enhancement of the anaesthesiologist's role in the CBME.

13.
Ann Biomed Eng ; 50(4): 365-386, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35226279

RESUMO

Intracerebral hemorrhage is a leading cause of morbidity and mortality worldwide. To date, there is no specific treatment that clearly provides a benefit in functional outcome or mortality. Surgical treatment for hematoma evacuation has not yet shown clear benefit over medical management despite promising preclinical studies. Minimally invasive treatment options for hematoma evacuation are under investigation but remain in early-stage clinical trials. Robotics has the potential to improve treatment. In this paper, we review intracerebral hemorrhage pathology, currently available treatments, and potential robotic approaches to date. We also discuss the future role of robotics in stroke treatment.


Assuntos
Hemorragia Cerebral , Procedimentos Cirúrgicos Minimamente Invasivos , Hemorragia Cerebral/cirurgia , Humanos , Resultado do Tratamento
14.
J Med Robot Res ; 7(2-3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-37614779

RESUMO

In this work, the design, analysis, and characterization of a parallel robotic motion generation platform with 6-degrees of freedom (DoF) for magnetic resonance imaging (MRI) applications are presented. The motivation for the development of this robot is the need for a robotic platform able to produce accurate 6-DoF motion inside the MRI bore to serve as the ground truth for motion modeling; other applications include manipulation of interventional tools such as biopsy and ablation needles and ultrasound probes for therapy and neuromodulation under MRI guidance. The robot is comprised of six pneumatic cylinder actuators controlled via a robust sliding mode controller. Tracking experiments of the pneumatic actuator indicates that the system is able to achieve an average error of 0.69 ± 0.14 mm and 0.67 ± 0.40 mm for step signal tracking and sinusoidal signal tracking, respectively. To demonstrate the feasibility and potential of using the proposed robot for minimally invasive procedures, a phantom experiment was performed in the benchtop environment, which showed a mean positional error of 1.20 ± 0.43 mm and a mean orientational error of 1.09 ± 0.57°, respectively. Experiments conducted in a 3T whole body human MRI scanner indicate that the robot is MRI compatible and capable of achieving positional error of 1.68 ± 0.31 mm and orientational error of 1.51 ± 0.32° inside the scanner, respectively. This study demonstrates the potential of this device to enable accurate 6-DoF motions in the MRI environment.

15.
Magn Reson Med ; 87(1): 541-550, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411348

RESUMO

PURPOSE: Signal voids caused by metallic needles pose visualization and monitoring challenges in many MRI applications. In this work, we explore a solution to this problem in the form of an active shim insert that fits inside a needle and corrects the field disturbance (ΔB0 ) caused by the needle outside of it. METHODS: The ΔB0 induced by a 4 mm outside-diameter titanium needle at 3T is modeled and a two-coil orthogonal shim set is designed and fabricated to shim the ΔB0 . Signal recovery around the needle is assessed in multiple orientations in a water phantom with four different pulse sequences. Phase stability around the needle is assessed in an ex-vivo porcine tissue dynamic gradient echo experiment with and without shimming. Additionally, heating of the shim insert is assessed under 8 min of continuous operation with 1A current and concurrent imaging. RESULTS: An average recovery of ~63% of lost signal around the needle across orientations is shown with active shimming with a maximum current of 1.172 A. Signal recovery and correction of the underlying ΔB0 is shown to be independent of imaging sequence. Needle-induced phase gradients outside the perceptible signal void are also minimized with active shimming. Temperature rise of up to 0.9° Celsius is noted over 8 min of continuous 1A active shimming operation. CONCLUSION: A sequence independent method for minimization of metallic needle induced signal loss using an active shim insert is presented. The method has potential benefits in a range of qualitative and quantitative interventional MRI applications.


Assuntos
Artefatos , Agulhas , Animais , Encéfalo , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Suínos
17.
Ann Card Anaesth ; 23(3): 364-366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32687102

RESUMO

The tracheal bronchus is a rare congenital anomaly which occurs as a result of an additional tracheal outgrowth early in the embryonic life. It originates more commonly from the right wall of the trachea, above the carina. It is usually asymptomatic but may cause recurrent pneumonia, chronic bronchitis, or bronchiectasis. Here, we present the case of a 57-year-old lady posted for minimally invasive coronary surgery who was incidentally found to have an accessory bronchus during establishing one lung ventilation. The clinical implications of such a scenario is highlighted.


Assuntos
Brônquios/anormalidades , Brônquios/diagnóstico por imagem , Procedimentos Cirúrgicos Cardíacos , Procedimentos Cirúrgicos Minimamente Invasivos , Tomografia Computadorizada por Raios X/métodos , Traqueia/anormalidades , Traqueia/diagnóstico por imagem , Feminino , Humanos , Achados Incidentais , Pessoa de Meia-Idade
18.
Magn Reson Med ; 84(5): 2858-2870, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32597521

RESUMO

PURPOSE: Artifacts caused by large magnetic susceptibility differences between metallic needles and tissue are a persistent problem in many interventional MRI applications. The signal void caused by the needle can hide procedure targets and prevent accurate image-based monitoring. In this paper, a solution to this problem is presented in the form of an active shim insert inspired from degaussing coils used in naval vessels, that is designed to correct the field disturbance (ΔB0 ) caused by the needle. METHODS: The ΔB0 induced by a 10 gauge hollow single-beveled titanium needle at 3T is modeled in different orientations. A set of 63 orthogonal coil pairs with unique tip paths are evaluated for shimming performance, and an optimal coil pair is chosen. Shimming performance and current demands are evaluated over a range of needle orientations. RESULTS: Robust correction of the titanium needle induced ΔB0 is predicted using a flat no-loop coil combined with an orthogonal 1½ turn loop coil angled at the bevel angle for most orientations, with currents well below 1 amp per coil. Reductions in ΔB0 standard deviations with shimming ranged from ~49% to ~10% depending on needle orientation, with performance worsening as the needle is aligned more along B0 . CONCLUSION: Simulations predict that it is possible to minimize metallic probe induced ΔB0 and signal losses using externally supplied direct current shim coil inserts in arbitrary orientations for potential benefits in many interventional MRI applications.


Assuntos
Processamento de Imagem Assistida por Computador , Imagem por Ressonância Magnética Intervencionista , Encéfalo , Imageamento por Ressonância Magnética , Agulhas
19.
Ann Biomed Eng ; 47(11): 2322-2333, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31218486

RESUMO

This paper presents a hardware and software system to implement the task space control of an MR-conditional robot by integrating inductively coupled wireless coil based tracking feedback into the control loop. The main motivation of this work is to increase the accuracy performance and address the system uncertainties in the practical scenarios. We present the MR-conditional robot hardware design, wireless tracking method, and custom-designed communication software for real-time tracking data transfer. Based on these working principles, we fabricate the robot platform and evaluate the complete system with respect to various performance indices, i.e. data communication speed, targeting accuracy, tracking coil resolution, image quality, temperature variation, and task space control accuracy for static and dynamic targeting inside MRI scanner. The in-scanner targeting results show that the MR-conditional robot with wireless tracking coil feedback achieves the targeting error of 0.17 ± 0.08 mm, while the error calculated from the joint space optical encoder feedback is 0.68 ± 0.19 mm.


Assuntos
Imageamento por Ressonância Magnética , Robótica , Software , Desenho de Equipamento , Retroalimentação
20.
Int J Comput Assist Radiol Surg ; 14(1): 105-115, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30173334

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is one of the deadliest forms of stroke in the USA. Conventional surgical techniques such as craniotomy or stereotactic aspiration disrupt a large volume of healthy brain tissue in their attempts to reach the surgical site. Consequently, the surviving patients suffer from debilitating complications. METHODS: We fabricated a novel MR-conditional steerable needle robot for ICH treatment. The robot system is powered by a custom-designed high power and low-cost pneumatic motor. We tested the robot's targeting accuracy and MR-conditionality performance, and performed phantom evacuation experiment under MR image guidance. RESULTS: Experiments demonstrate that the robotic hardware is MR-conditional; the robot has the targeting accuracy of 1.26 ± 1.22 mm in bench-top tests. With real-time MRI guidance, the robot successfully reached the desired target and evacuated an 11.3 ml phantom hematoma in 9 min. CONCLUSION: MRI-guided steerable needle robotic system is a potentially feasible approach for ICH treatment by providing accurate needle guidance and intraoperative surgical outcome evaluation.


Assuntos
Encéfalo/cirurgia , Hemorragia Cerebral/cirurgia , Imageamento por Ressonância Magnética/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Encéfalo/diagnóstico por imagem , Hemorragia Cerebral/diagnóstico por imagem , Desenho de Equipamento , Humanos , Imageamento Tridimensional/métodos , Agulhas , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...