Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(5)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37238603

RESUMO

In this review, we present a comprehensive list of the ubiquitin-like modifiers (Ubls) of Saccharomyces cerevisiae, a common model organism used to study fundamental cellular processes that are conserved in complex multicellular organisms, such as humans. Ubls are a family of proteins that share structural relationships with ubiquitin, and which modify target proteins and lipids. These modifiers are processed, activated and conjugated to substrates by cognate enzymatic cascades. The attachment of substrates to Ubls alters the various properties of these substrates, such as function, interaction with the environment or turnover, and accordingly regulate key cellular processes, including DNA damage, cell cycle progression, metabolism, stress response, cellular differentiation, and protein homeostasis. Thus, it is not surprising that Ubls serve as tools to study the underlying mechanism involved in cellular health. We summarize current knowledge on the activity and mechanism of action of the S. cerevisiae Rub1, Smt3, Atg8, Atg12, Urm1 and Hub1 modifiers, all of which are highly conserved in organisms from yeast to humans.


Assuntos
Proteínas de Saccharomyces cerevisiae , Ubiquitinas , Humanos , Ubiquitinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Proteínas/genética , Dano ao DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Ligases/genética
2.
J Appl Microbiol ; 133(3): 1660-1675, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35702895

RESUMO

AIMS: The work aimed to understand the important changes during glucose metabolism in Saccharomyces cerevisiae under acidified sodium nitrite (ac.NaNO2 ) mediated nitrosative stress. METHODS AND RESULTS: Confocal microscopy and fluorescence-activated cell sorting analysis were performed to investigate the generation of reactive nitrogen and oxygen species, and redox homeostasis under nitrosative stress was also characterized. Quantitative PCR analysis revealed that the expression of ADH genes was upregulated under such condition, whereas the ACO2 gene was downregulated. Some of the enzymes of the tricarboxylic acid cycle were partially inhibited, whereas malate metabolism and alcoholic fermentation were increased under nitrosative stress. Kinetics of ethanol production was also characterized. A network analysis was conducted to validate our findings. In the presence of ac.NaNO2 , in vitro protein tyrosine nitration formation was checked by western blotting using pure alcohol dehydrogenase and aconitase. CONCLUSIONS: Alcoholic fermentation rate was increased under stress condition and this altered metabolism might be conjoined with the defence machinery to overcome the nitrosative stress. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first work of this kind where the role of metabolism under nitrosative stress has been characterized in S. cerevisiae and it will provide a base to develop an alternative method of industrial ethanol production.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Etanol/metabolismo , Fermentação , Glucose/metabolismo , Estresse Nitrosativo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Nitrito de Sódio/metabolismo , Nitrito de Sódio/farmacologia
3.
Cell Biochem Biophys ; 78(1): 101-110, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31875278

RESUMO

S.cerevisiae is an industrially important organism known for its ability to produce ethanol as the demand for ethanol is increasing day by day all over the world, the need to find better and alternative ways to increase ethanol production is also rising. In this work we have proposed such alternative but effective method for producing ethanol by S.cerevisiae. Here, we are reporting for the first time the effect of nitrosative stress on ethanol production. Under in vivo condition, nitrosative stress is marked by the modification of macromolecules in the presence of reactive nitrogen species (RNS). Our result showed that treated cells were more capable for ethanol production compared with untreated cells. Our result also showed enhanced alcohol dehydrogenase activity under stressed condition. Further ethanol production was also optimized by using Response Surface Methodology (RSM) with stressed cells. Further, production of ethanol with immobilized beads of stress affected Saccharomyces cerevisiae was also determined. Overall, the obtained data showed that under nitrosative stress, the maximum ethanol production is 34.4 g/l after 24 h and such higher production was observed even after several cycles of fermentation. This is the first report of this kind showing the relation between nitrosative stress and ethanol production in Saccharomyces cerevisiae which may have important industrial application.


Assuntos
Etanol/metabolismo , Estresse Nitrosativo , Saccharomyces cerevisiae/metabolismo , Álcool Desidrogenase/metabolismo , Estresse Nitrosativo/efeitos dos fármacos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Nitrito de Sódio/farmacologia
4.
Sci Rep ; 8(1): 13031, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158645

RESUMO

Host-guest interaction of two significant drugs, phenylephrine hydrochloride and synephrine with α and ß-cyclodextrins were studied systematically. Initially two simple but reliable physicochemical techniques namely conductance and surface tension were employed to find out saturation concentration for the inclusion and its stoichiometry. The obtained 1:1 stoichiometry was further confirmed by two spectrometric methods, UV-Vis study and spectrofluorimetry. Significant shifts in IR stretching frequency also support the inclusion process. Relative stabilities of the inclusion complexes were established by the association constants obtained from UV-Vis spectroscopic measurements, program based mathematical calculation of conductivity data. Calculations of the thermodynamic parameters dictates thermodynamic feasibility of the inclusion process. Spectrofluorometric measurement scaffolds the UV-Vis spectroscopic measurement validating stability of the ICs once again. Mass spectroscopic measurement gives the molecular ion peaks corresponding to the inclusion complex of 1:1 molar ratio of host and guest molecules. The mechanism of inclusion was drawn by 1H-NMR and 2D ROESY spectroscopic analysis. Surface texture of the inclusion complexes was studied by SEM. Finally, the cytotoxic activities of the inclusion complexes were analyzed and found, Cell viability also balances for non-toxic behavior of the ICs. Moreover, all the studies reveal the formation of inclusion complexes of two ephedra free, alternatively emerging drugs (after their banned product having ephedra) SNP, PEH with α and ß-CD which enriches the drug delivery system with their regulatory release without any chemical modification.


Assuntos
Fármacos Antiobesidade/farmacologia , Ciclodextrinas/farmacologia , Fenilefrina/farmacologia , Sinefrina/farmacologia , alfa-Ciclodextrinas/farmacologia , beta-Ciclodextrinas/farmacologia , Fármacos Antiobesidade/síntese química , Fármacos Antiobesidade/química , Fármacos Antiobesidade/toxicidade , Ciclodextrinas/síntese química , Ciclodextrinas/química , Ciclodextrinas/toxicidade , Estabilidade de Medicamentos , Viabilidade Microbiana/efeitos dos fármacos , Fenilefrina/síntese química , Fenilefrina/química , Fenilefrina/toxicidade , Análise Espectral , Sinefrina/síntese química , Sinefrina/química , Sinefrina/toxicidade , alfa-Ciclodextrinas/síntese química , alfa-Ciclodextrinas/química , alfa-Ciclodextrinas/toxicidade , beta-Ciclodextrinas/síntese química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...