Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gene Regul Mech ; 1866(3): 194966, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532097

RESUMO

Plants control expression of their genes in a way that involves manipulating the chromatin structural dynamics in order to adapt to environmental changes and carry out developmental processes. Histone modifications like histone methylation are significant epigenetic marks which profoundly and globally modify chromatin, potentially affecting the expression of several genes. Methylation of histones is catalyzed by histone lysine methyltransferases (HKMTs), that features an evolutionary conserved domain known as SET [Su(var)3-9, E(Z), Trithorax]. This methylation is directed at particular lysine (K) residues on H3 or H4 histone. Plant SET domain group (SDG) proteins are categorized into different classes that have been conserved through evolution, and each class have specificity that influences how the chromatin structure operates. The domains discovered in plant SET domain proteins have typically been linked to protein-protein interactions, suggesting that majority of the SDGs function in complexes. Additionally, SDG-mediated histone mark deposition also affects alternative splicing events. In present review, we discussed the diversity of SDGs in plants including their structural properties. Additionally, we have provided comprehensive summary of the functions of the SDG-domain containing proteins in plant developmental processes and response to environmental stimuli have also been highlighted.


Assuntos
Histonas , Lisina , Histonas/metabolismo , Lisina/metabolismo , Domínios PR-SET , Proteínas de Plantas/metabolismo , Plantas/genética , Cromatina/genética , Epigênese Genética
2.
Plant Physiol Biochem ; 201: 107823, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327647

RESUMO

Different environmental cues lead to changes in physiology, biochemistry and molecular status of plant's growth. Till date, various genes have been accounted for their role in regulating plant development and response to abiotic stress. Excluding genes that code for a functional protein in a cell, a large chunk of the eukaryotic transcriptome consists of non-coding RNAs (ncRNAs) which lack protein coding capacity but are still functional. Recent advancements in Next Generation Sequencing (NGS) technology have led to the unearthing of different types of small and large non-coding RNAs in plants. Non-coding RNAs are broadly categorised into housekeeping ncRNAs and regulatory ncRNAs which work at transcriptional, post-transcriptional and epigenetic levels. Diverse ncRNAs play different regulatory roles in nearly all biological processes including growth, development and response to changing environments. This response can be perceived and counteracted by plants using diverse evolutionarily conserved ncRNAs like miRNAs, siRNAs and lncRNAs to participate in complex molecular regimes by activating gene-ncRNA-mRNA regulatory modules to perform the downstream function. Here, we review the current understanding with a focus on recent advancements in the functional studies of the regulatory ncRNAs at the nexus of abiotic stresses and development. Also, the potential roles of ncRNAs in imparting abiotic stress tolerance and yield improvement in crop plants are also discussed with their future prospects.


Assuntos
MicroRNAs , RNA Longo não Codificante , Regulação da Expressão Gênica de Plantas , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Estresse Fisiológico/genética , RNA Longo não Codificante/genética , Plantas/genética , Plantas/metabolismo , MicroRNAs/genética
3.
Sci Rep ; 11(1): 22049, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764387

RESUMO

Wheat, one of the major cereal crops worldwide, get adversely affected by rising global temperature. We have identified the diploid B genome progenitor of wheat, Aegilops speltoides (SS), as a potential donor for heat stress tolerance. Therefore, the present work was planned to study the total transcriptome profile of heat stress-tolerant Ae. speltoides accession pau3809 (AS3809) and compare with that of tetraploid and hexaploid wheat cultivars PDW274 and PBW725, respectively. The comparative transcriptome was utilized to identify and validate heat stress transcription factors (HSFs), the key genes involved in imparting heat stress tolerance. Transcriptome analysis led to the identification of a total of 74 K, 68 K, and 76 K genes in AS3809, PDW274, and PBW725, respectively. There was a high uniformity of GO profiles under the biological, molecular, and cellular functions across the three wheat transcriptomes, suggesting the conservation of gene function. Twelve HSFs having the highest FPKM value were identified in the AS3809 transcriptome data, while six of these HSFs namely HSFA3, HSFA5, HSFA9, HSFB2a, HSFB2b, and HSFC1b, were validated with qRT PCR. These six HSFs were identified as an important component of thermotolerance in AS3809 as evident from their comparative higher expression under heat stress.


Assuntos
Aegilops/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Transcriptoma , Aegilops/fisiologia , Genoma de Planta , Resposta ao Choque Térmico , Triticum/genética , Triticum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...