Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 11(3): 816-865, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38550347

RESUMO

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this "golden age" of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption.

2.
Sci Adv ; 7(50): eabj0627, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890236

RESUMO

Single-photon emitters are essential in enabling several emerging applications in quantum information technology, quantum sensing, and quantum communication. Scalable photonic platforms capable of hosting intrinsic or embedded sources of single-photon emission are of particular interest for the realization of integrated quantum photonic circuits. Here, we report on the observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates. Photophysical analysis reveals bright (>105 counts/s), stable, linearly polarized, and pure quantum emitters in SiN films with a second-order autocorrelation function value at zero time delay g(2)(0) below 0.2 at room temperature. We suggest that the emission originates from a specific defect center in SiN because of the narrow wavelength distribution of the observed luminescence peak. Single-photon emitters in SiN have the potential to enable direct, scalable, and low-loss integration of quantum light sources with a well-established photonic on-chip platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...