Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurogastroenterol Motil ; 23(5): e181-90, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21414101

RESUMO

BACKGROUND: γ-Aminobutyric acid (GABA) acts on specific neural receptors [A, B and C(Aρ)] to modulate gastrointestinal function. The precise role of GABA receptor activation in the regulation of presynaptic nitric oxide (NO) synthesis in nerve terminals is unknown. METHODS: Rat ileal nerve terminals were isolated by differential centrifugation. Nitric oxide synthesis was analysed using a L-[(3) H]arginine assay. In vitro studies were performed under non-adrenergic non-cholinergic (NANC) conditions on isolated ileal segments. KEY RESULTS: γ-Aminobutyric acid inhibited NO synthesis significantly (n = 6, P < 0.05) [(fmol mg(-1) min(-1)) control: 27.7 ± 1.5, 10(-6) mol L(-1): 19.7 ± 1.3; 10(-5) mol L(-1): 17.5 ± 3.0]. This effect was antagonized by the GABA A receptor antagonist bicuculline and the GABA C receptor antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA), but not by the GABA B receptor antagonist SCH 50911. The GABA A receptor agonist muscimol [(fmol mg(-1) min(-1)) control: 27.6 ± 1.0, 10(-6) mol L(-1): 19.1 ± 1.7, n = 5, P < 0.05] and the GABA C receptor agonist cis-4-aminocrotonic acid (CACA) [(fmol mg(-1) min(-1)) control: 29.5 ± 3.2, 10(-3) mol L(-1): 20.3 ± 2.5, n = 6, P < 0.05], mimicked the GABA-effect, whereas the GABA B agonist baclofen was ineffective. Bicuculline reversed the inhibitory effect of muscimol, TPMPA antagonized the effect of CACA. In functional experiments the GABA A and C receptor agonists reduced the NANC relaxation induced by electrical field stimulation in rat ileum by about 40%. After NOS-inhibition by Nε-nitro-L-arginine methyl ester (L-NAME) the GABA A receptor agonist had no effect, whereas the GABA C receptor agonist still showed a residual response. CONCLUSIONS & INFERENCES: γ-Aminobutyric acid inhibits neural NO synthesis in rat ileum by GABA A and GABA C(Aρ) receptor-mediated mechanisms.


Assuntos
Íleo/inervação , Íleo/fisiologia , Óxido Nítrico/biossíntese , Sinaptossomos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Antagonistas GABAérgicos/metabolismo , Masculino , Relaxamento Muscular/fisiologia , Músculo Liso/fisiologia , Óxido Nítrico Sintase/metabolismo , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de GABA/metabolismo , Sinapses/metabolismo
2.
Am J Physiol Gastrointest Liver Physiol ; 283(5): G1027-34, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12381515

RESUMO

In enteric synaptosomes of the rat, the role of voltage-dependent Ca(2+) channels in K(+)-induced VIP release and nitric oxide (NO) synthesis was investigated. Basal VIP release was 39 +/- 4 pg/mg, and cofactor-substituted NO synthase activity was 7.0 +/- 0.8 fmol. mg(-1). min(-1). K(+) depolarization (65 mM) stimulated VIP release Ca(2+) dependently (basal, 100%; K(+), 172.2 +/- 16.2%; P < 0.05, n = 5). K(+)-stimulated VIP release was reduced by blockers of the P-type (omega-agatoxin-IVA, 3 x 10(-8) M) and N-type (omega-conotoxin-GVIA, 10(-6) M) Ca(2+) channels by ~50 and 25%, respectively, but not by blockers of the L-type (isradipine, 10(-8) M), Q-type (omega-conotoxin-MVIIC, 10(-6) M), or T-type (Ni(2+), 10(-6) M) Ca(2+) channels. In contrast, NO synthesis was suppressed by omega-agatoxin-IVA, omega-conotoxin-GVIA, and isradipine by ~79, 70, and 70%, respectively, whereas Ni(2+) and omega-conotoxin-MVIIC had no effect. These findings are suggestive of a coupling of depolarization-induced VIP release primarily to the P- and N-type Ca(2+) channels, whereas NO synthesis is presumably dependent on Ca(2+) influx not only via the P- and N- but also via the L-type Ca(2+) channel. In contrast, none of the Ca(2+) channel blockers affected VIP release evoked by exogenous NO, suggesting that NO induces VIP secretion by a different mechanism, presumably involving intracellular Ca(2+) stores.


Assuntos
Canais de Cálcio/metabolismo , Intestino Delgado/metabolismo , Óxido Nítrico/biossíntese , Sinaptossomos/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Masculino , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/metabolismo , Potássio/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...