Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 9: 962, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30487776

RESUMO

Obstructive Sleep Apnea (OSA) is a prevalent condition and a major cause of morbidity and mortality in Western Society. The loss of motor input to the tongue and specifically to the genioglossus muscle during sleep is associated with pharyngeal collapsibility and the development of OSA. We applied a novel chemogenetic method to develop a mouse model of sleep disordered breathing Our goal was to reversibly silence neuromotor input to the genioglossal muscle using an adeno-associated viral vector carrying inhibitory designer receptors exclusively activated by designer drugs AAV5-hM4Di-mCherry (DREADD), which was delivered bilaterally to the hypoglossal nucleus in fifteen C57BL/6J mice. In the in vivo experiment, 4 weeks after the viral administration mice were injected with a DREADD ligand clozapine-N-oxide (CNO, i.p., 1mg/kg) or saline followed by a sleep study; a week later treatments were alternated and a second sleep study was performed. Inspiratory flow limitation was recognized by the presence of a plateau in mid-respiratory flow; oxyhemoglobin desaturations were defined as desaturations >4% from baseline. In the in vitro electrophysiology experiment, four males and three females of 5 days of age were used. Sixteen-nineteen days after DREADD injection brain slices of medulla were prepared and individual hypoglossal motoneurons were recorded before and after CNO application. Positive mCherry staining was detected in the hypoglossal nucleus in all mice confirming successful targeting. In sleep studies, CNO markedly increased the frequency of flow limitation n NREM sleep (from 1.9 ± 1.3% after vehicle injection to 14.2 ± 3.4% after CNO, p < 0.05) and REM sleep (from 22.3% ± 4.1% to 30.9 ± 4.6%, respectively, p < 0.05) compared to saline treatment, but there was no significant oxyhemoglobin desaturation or sleep fragmentation. Electrophysiology recording in brain slices showed that CNO inhibited firing frequency of DREADD-containing hypoglossal motoneurons. We conclude that chemogenetic approach allows to silence hypoglossal motoneurons in mice, which leads to sleep disordered breathing manifested by inspiratory flow limitation during NREM and REM sleep without oxyhemoglobin desaturation or sleep fragmentation. Other co-morbid factors, such as compromised upper airway anatomy, may be needed to achieve recurrent pharyngeal obstruction observed in OSA.

2.
Laryngoscope ; 118(1): 44-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17989582

RESUMO

INTRODUCTION: The pterygopalatine fossa (PPF) is a narrow space located between the posterior wall of the antrum and the pterygoid plates. Surgical access to the PPF is difficult because of its protected position and its complex neurovascular anatomy. Endonasal approaches using rod lens endoscopes, however, provide better visualization of this area and are associated with less morbidity than external approaches. Our aim was to develop a simple anatomical model using cadaveric specimens injected with intravascular colored silicone to demonstrate the endoscopic anatomy of the PPF. This model could be used for surgical instruction of the transpterygoid approach. METHODS: We dissected six PPF in three cadaveric specimens prepared with intravascular injection of colored material using two different injection techniques. An endoscopic endonasal approach, including a wide nasoantral window and removal of the posterior antrum wall, provided access to the PPF. RESULTS: We produced our best anatomical model injecting colored silicone via the common carotid artery. We found that, using an endoscopic approach, a retrograde dissection of the sphenopalatine artery helped to identify the internal maxillary artery (IMA) and its branches. Neural structures were identified deeper to the vascular elements. Notable anatomical landmarks for the endoscopic surgeon are the vidian nerve and its canal that leads to the petrous portion of the internal carotid artery (ICA), and the foramen rotundum, and V2 that leads to Meckel's cave in the middle cranial fossa. These two nerves, vidian and V2, are separated by a pyramidal shaped bone and its apex marks the ICA. CONCLUSION: Our anatomical model provides the means to learn the endoscopic anatomy of the PPF and may be used for the simulation of surgical techniques. An endoscopic endonasal approach provides adequate exposure to all anatomical structures within the PPF. These structures may be used as landmarks to identify and control deeper neurovascular structures. The significance is that an anatomical model facilitates learning the surgical anatomy and the acquisition of surgical skills. A dissection superficial to the vascular structures preserves the neural elements. These nerves and their bony foramina, such as the vidian nerve and V2, are critical anatomical landmarks to identify and control the ICA at the skull base.


Assuntos
Endoscopia/educação , Seio Maxilar/anatomia & histologia , Procedimentos Cirúrgicos Otorrinolaringológicos/educação , Palato/anatomia & histologia , Osso Esfenoide/anatomia & histologia , Materiais de Ensino , Cadáver , Artéria Carótida Interna/anatomia & histologia , Corantes , Dissecação , Humanos , Nervo Mandibular/anatomia & histologia , Artéria Maxilar/anatomia & histologia , Nervo Maxilar/anatomia & histologia , Seio Maxilar/irrigação sanguínea , Seio Maxilar/inervação , Modelos Anatômicos , Nariz/irrigação sanguínea , Órbita/inervação , Palato/irrigação sanguínea , Palato/inervação , Osso Petroso/irrigação sanguínea , Osso Petroso/inervação , Base do Crânio/anatomia & histologia , Osso Esfenoide/irrigação sanguínea , Osso Esfenoide/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...