Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
C R Biol ; 345(2): 1-5, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36847460
3.
Biochim Biophys Acta ; 1829(3-4): 251-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23142548

RESUMO

Pioneering studies on eukaryotic transcription were undertaken with the bacterial system in mind. Will the bacterial paradigm apply to eukaryotes? Are there promoter sites scattered in the eukaryotic genome, and sigma-like proteins? Why three forms of RNA polymerase in eukaryotic cells? Why are they structurally so complex, in particular RNA polymerases I and III, compared to the bacterial enzyme? These questions and others that were raised along the way are evoked in this short historical survey of odd RNA polymerases studies, with some emphasis on the contribution of these studies to our global understanding of eukaryotic transcription systems. This article is part of a Special Issue entitled: Transcription by Odd Pols.


Assuntos
RNA Polimerase III/metabolismo , RNA Polimerase I/metabolismo , Transcrição Gênica , Animais , Eucariotos/enzimologia , Humanos
4.
Mol Cell ; 25(6): 813-23, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17386259

RESUMO

RNA polymerase III (RNAPIII) synthesizes tRNA, 5S RNA, U6 snRNA, and other small RNAs. The structure of yeast RNAPIII, determined at 17 A resolution by cryo-electron microscopy and single-particle analysis, reveals a hand-like shape typical of RNA polymerases. Compared to RNAPII, RNAPIII is characterized by a bulkier stalk and by prominent features extending from the DNA binding cleft. We attribute the latter primarily to five RNAPIII-specific subunits, present as two distinct subcomplexes (C82/C34/C31 and C53/C37). Antibody labeling experiments localize the C82/C34/C31 subcomplex to the clamp side of the DNA binding cleft, consistent with its known role in transcription initiation. The C53/C37 subcomplex appears to be situated across the cleft, near the presumed location of downstream DNA, accounting for its role in transcription termination. Our structure rationalizes available mutagenesis and biochemical data and provides insights into RNAPIII-mediated transcription.


Assuntos
RNA Polimerase III/genética , Saccharomyces cerevisiae/enzimologia , Sítio de Iniciação de Transcrição , Sítios de Ligação , Microscopia Eletrônica , Modelos Moleculares , Conformação Proteica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , RNA Polimerase III/metabolismo , RNA Polimerase III/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
6.
Mol Cell ; 24(2): 221-32, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-17052456

RESUMO

Yeast RNA polymerase III is recruited upon binding of subcomplexes tauA and tauB of transcription factor IIIC (TFIIIC) to the A and B blocks of tRNA gene promoters. The tauB subcomplex consists of subunits tau60, tau91, and tau138. We determined the 3.2 A crystal structure of tau60 bound to a large C-terminal fragment of tau91 (Deltatau91). Deltatau91 protein contains a seven-bladed propeller preceded by an N-terminal extension, whereas tau60 contains a structurally homologous propeller followed by a C-terminal domain with a novel alpha/beta fold. The two propeller domains do not have any detectable DNA binding activity and mediate heterodimer formation that may serve as scaffold for tau138 assembly. We show that the C-terminal tau60 domain interacts with the TATA binding protein (TBP). Recombinant tauB recruits TBP and stimulates TFIIIB-directed transcription on a TATA box containing tRNA gene, implying a combined contribution of tauA and tauB to preinitiation complex formation.


Assuntos
Fatores de Transcrição TFIII/química , Fatores de Transcrição TFIII/fisiologia , Sequência de Aminoácidos , Cristalografia por Raios X , Dimerização , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Transcrição Gênica
7.
Genes Dev ; 20(15): 2030-40, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16882981

RESUMO

Regulation of ribosome biogenesis is a key element of cell biology, not only because ribosomes are directly required for growth, but also because ribosome production monopolizes nearly 80% of the global transcriptional activity in rapidly growing yeast cells. These observations underscore the need for a tight regulation of ribosome synthesis in response to environmental conditions. In eukaryotic cells, ribosome synthesis involves the activities of the three nuclear RNA polymerases (Pol). Although postulated, there is no clear evidence indicating whether the maintenance of an equimolar supply of ribosomal components reflects communication between the nuclear transcriptional machineries. Here, by constructing a yeast strain expressing a Pol I that remains constitutively competent for the initiation of transcription under stress conditions, we demonstrate that derepression of Pol I transcription leads to a derepression of Pol II transcription that is restricted to the genes encoding ribosomal proteins. Furthermore, we show that the level of 5S rRNA, synthesized by Pol III, is deregulated concomitantly with Pol I transcription. Altogether, these results indicate that a partial derepression of Pol I activity drives an abnormal accumulation of all ribosomal components, highlighting the critical role of the regulation of Pol I activity within the control of ribosome biogenesis.


Assuntos
Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase II/fisiologia , RNA Polimerase I/fisiologia , RNA Ribossômico 5S/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica , RNA Ribossômico 5S/metabolismo , Saccharomyces cerevisiae/genética
8.
Mol Cell ; 22(5): 623-32, 2006 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16762835

RESUMO

We report genome-wide analyses that establish Maf1 as a general and direct repressor of yeast RNA polymerase (Pol) III transcription. Chromatin immunoprecipitation (ChIP) coupled to microarray hybridization experiments showed an increased association of Maf1 to Pol III-transcribed genes under repressing condition (rapamycin treatment) correlated with a dissociation of Brf1 and Pol III. Maf1 can exist in various phosphorylation states and interacts with Pol III in a dephosphorylated state. The largest subunit of Pol III, C160, was identified as a target of Maf1. Under repressing conditions, Maf1 is dephosphorylated and accumulates in the nucleus, and Pol III-Maf1 interaction increases. Mutations in protein phosphatase type 2A (PP2A) catalytic subunit-encoding genes prevented rapamycin-induced Maf1 dephosphorylation, its nuclear accumulation, and repression of Pol III transcription. The results indicate that Pol III transcription can be globally and rapidly downregulated via dephosphorylation and relocation of a general negative cofactor.


Assuntos
Regulação Fúngica da Expressão Gênica , Fosfoproteínas Fosfatases/metabolismo , RNA Polimerase III/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Regulação para Baixo , Repressão Enzimática/genética , Sinais de Localização Nuclear/metabolismo , Fosforilação , Subunidades Proteicas/metabolismo , RNA Polimerase III/metabolismo , Transdução de Sinais , Sirolimo/metabolismo , Sirolimo/farmacologia , Fator de Transcrição TFIIIB/metabolismo
9.
J Biol Chem ; 281(17): 11685-92, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16517597

RESUMO

Transcription factor TFIIIC is a multisubunit complex required for promoter recognition and transcriptional activation of class III genes. We describe here the reconstitution of complete recombinant yeast TFIIIC and the molecular characterization of its two DNA-binding domains, tauA and tauB, using the baculovirus expression system. The B block-binding module, rtauB, was reconstituted with rtau138, rtau91, and rtau60 subunits. rtau131, rtau95, and rtau55 formed also a stable complex, rtauA, that displayed nonspecific DNA binding activity. Recombinant rTFIIIC was functionally equivalent to purified yeast TFIIIC, suggesting that the six recombinant subunits are necessary and sufficient to reconstitute a transcriptionally active TFIIIC complex. The formation and the properties of rTFIIIC-DNA complexes were affected by dephosphorylation treatments. The combination of complete recombinant rTFIIIC and rTFIIIB directed a low level of basal transcription, much weaker than with the crude B'' fraction, suggesting the existence of auxiliary factors that could modulate the yeast RNA polymerase III transcription system.


Assuntos
RNA Polimerase III , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIIB , Fatores de Transcrição TFIII , Transcrição Gênica , Baculoviridae/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA , Regulação Fúngica da Expressão Gênica , Complexos Multiproteicos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/isolamento & purificação , RNA Polimerase III/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/isolamento & purificação , Fator de Transcrição TFIIIB/metabolismo , Fatores de Transcrição TFIII/genética , Fatores de Transcrição TFIII/isolamento & purificação , Fatores de Transcrição TFIII/metabolismo
10.
Protein Expr Purif ; 45(2): 255-61, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16115780

RESUMO

The transcription factor IIIC (TFIIIC) is a multisubunit DNA-binding factor required for promoter recognition and TFIIIB assembly on tRNA genes transcribed by RNA polymerase III. Yeast TFIIIC consists of six subunits, organized in the two globular subcomplexes tauA and tauB, which recognize two internal tDNA promoter elements, the A and the B block, respectively. As a first step toward a detailed structural analysis of TFIIIC, we report here the expression, proteolytic analysis, reconstitution, and crystallization of the complex between yeast TFIIIC subunits tau91 and tau60. Proteolysis provided an insight into the domain structure of tau60 and tau91. Both the proteins form a stable complex that does not require an N-terminal, protease-sensitive extension of tau91. Crystals diffracting beyond 3.2 A were obtained from a complex formed by full-length tau60 and the N-terminally truncated form of tau91 lacking this extension.


Assuntos
Subunidades Proteicas , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição TFIII , Cristalização , Complexos Multiproteicos , Regiões Promotoras Genéticas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição TFIII/química , Fatores de Transcrição TFIII/genética , Fatores de Transcrição TFIII/metabolismo
11.
Mol Cell Biol ; 25(19): 8631-42, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16166643

RESUMO

We used genome-wide expression analysis in Saccharomyces cerevisiae to explore whether and how the expression of protein-coding, RNA polymerase (Pol) II-transcribed genes is influenced by a decrease in RNA Pol III-dependent transcription. The Pol II transcriptome was characterized in four thermosensitive, slow-growth mutants affected in different components of the RNA Pol III transcription machinery. Unexpectedly, we found only a modest correlation between altered expression of Pol II-transcribed genes and their proximity to class III genes, a result also confirmed by the analysis of single tRNA gene deletants. Instead, the transcriptome of all of the four mutants was characterized by increased expression of genes known to be under the control of the Gcn4p transcriptional activator. Indeed, GCN4 was found to be translationally induced in the mutants, and deleting the GCN4 gene eliminated the response. The Gcn4p-dependent expression changes did not require the Gcn2 protein kinase and could be specifically counteracted by an increased gene dosage of initiator tRNA(Met). Initiator tRNA(Met) depletion thus triggers a GCN4-dependent reprogramming of genome expression in response to decreased Pol III transcription. Such an effect might represent a key element in the coordinated transcriptional response of yeast cells to environmental changes.


Assuntos
Genoma Fúngico , RNA Polimerase III/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Fatores de Transcrição de Zíper de Leucina Básica , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Dosagem de Genes , Genes Fúngicos , Genes Reporter , Temperatura Alta , Óperon Lac , Metionina/metabolismo , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Biossíntese de Proteínas , RNA/química , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
12.
EMBO J ; 22(18): 4738-47, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12970186

RESUMO

RNA polymerase III (Pol III) transcribes a large set of genes encoding small untranslated RNAs like tRNAs, 5S rRNA, U6 snRNA or RPR1 RNA. To get a global view of class III (Pol III-transcribed) genes, the distribution of essential components of Pol III, TFIIIC and TFIIIB was mapped across the yeast genome. During active growth, most class III genes and few additional loci were targeted by TFIIIC, TFIIIB and Pol III, indicating that they were transcriptionally active. SNR52, which encodes a snoRNA, was identified as a new class III gene. During the late growth phase, TFIIIC remained bound to most class III genes while the recruitment of Pol III and, to a lesser extent, of TFIIIB was down regulated. This study fixes a reasonable upper bound to the number of class III genes in yeast and points to a global regulation at the level of Pol III and TFIIIB recruitment.


Assuntos
Regulação Fúngica da Expressão Gênica , Genoma Fúngico , RNA Polimerase III/genética , RNA Fúngico/genética , Saccharomyces cerevisiae/enzimologia , Transcrição Gênica , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Fúngicos , Regulação Enzimológica da Expressão Gênica , Dados de Sequência Molecular , RNA Fúngico/classificação , Saccharomyces cerevisiae/genética , Fatores de Transcrição TFIII/metabolismo
13.
Trends Biochem Sci ; 28(4): 202-9, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12713904

RESUMO

Gene transcription is repetitive, enabling the synthesis of multiple copies of identical RNA molecules from the same template. The cyclic process of RNA synthesis from active genes, referred to as transcription reinitiation, contributes significantly to the level of RNAs in living cells. Contrary to the perception that multiple transcription cycles are a mere iteration of mechanistically identical steps, a large body of evidence indicates that, in most transcription systems, reinitiation involves highly specific and regulated pathways. These pathways influence the availability for reinitiation of template DNA and/or transcription proteins, and represent an important yet poorly characterized aspect of gene regulation.


Assuntos
RNA/metabolismo , Transcrição Gênica , Genes Bacterianos , Genes Fúngicos , Humanos , Modelos Genéticos , RNA Polimerase I/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo
14.
J Biol Chem ; 278(12): 10450-7, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12533520

RESUMO

The yeast transcription factor IIIC (TFIIIC) is organized in two distinct multisubunit domains, tauA and tauB, that are respectively responsible for TFIIIB assembly and stable anchoring of TFIIIC on the B block of tRNA genes. Surprisingly, we found that the removal of tauA by mild proteolysis stabilizes the residual tauB.DNA complexes at high temperatures. Focusing on the well conserved tau95 subunit that belongs to the tauA domain, we found that the tau95-E447K mutation has long distance effects on the stability of TFIIIC.DNA complexes and start site selection. Mutant TFIIIC.DNA complexes presented a shift in their 5' border, generated slow-migrating TFIIIB.DNA complexes upon stripping TFIIIC by heparin or heat treatment, and allowed initiation at downstream sites. In addition, mutant TFIIIC.DNA complexes were highly unstable at high temperatures. Coimmunoprecipitation experiments indicated that tau95 participates in the interconnection of tauA with tauB via its contacts with tau138 and tau91 polypeptides. The results suggest that tau95 serves as a scaffold critical for tauA.DNA spatial configuration and tauB.DNA stability.


Assuntos
DNA/metabolismo , Proteínas Fúngicas/química , Fatores de Transcrição TFIII/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Conformação Proteica , Subunidades Proteicas , Relação Estrutura-Atividade , Fatores de Transcrição TFIII/fisiologia , Transcrição Gênica
15.
Mol Cell Biol ; 23(1): 195-205, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12482973

RESUMO

The essential C17 subunit of yeast RNA polymerase (Pol) III interacts with Brf1, a component of TFIIIB, suggesting a role for C17 in the initiation step of transcription. The protein sequence of C17 (encoded by RPC17) is conserved from yeasts to humans. However, mammalian homologues of C17 (named CGRP-RCP) are known to be involved in a signal transduction pathway related to G protein-coupled receptors, not in transcription. In the present work, we first establish that human CGRP-RCP is the genuine orthologue of C17. CGRP-RCP was found to functionally replace C17 in Deltarpc17 yeast cells; the purified mutant Pol III contained CGRP-RCP and had a decreased specific activity but initiated faithfully. Furthermore, CGRP-RCP was identified by mass spectrometry in a highly purified human Pol III preparation. These results suggest that CGRP-RCP has a dual function in mammals. Next, we demonstrate by genetic and biochemical approaches that C17 forms with C25 (encoded by RPC25) a heterodimer akin to Rpb4/Rpb7 in Pol II. C17 and C25 were found to interact genetically in suppression screens and physically in coimmunopurification and two-hybrid experiments. Sequence analysis and molecular modeling indicated that the C17/C25 heterodimer likely adopts a structure similar to that of the archaeal RpoE/RpoF counterpart of the Rpb4/Rpb7 complex. These RNA polymerase subunits appear to have evolved to meet the distinct requirements of the multiple forms of RNA polymerases.


Assuntos
Proteínas Fúngicas/metabolismo , RNA Polimerase III/metabolismo , RNA Polimerase II/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dimerização , Proteínas Fúngicas/genética , Humanos , Substâncias Macromoleculares , Mamíferos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase III/genética , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Fator sigma/química , Fator sigma/genética , Fator sigma/metabolismo , Supressão Genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Leveduras/genética , Leveduras/metabolismo
16.
Proc Natl Acad Sci U S A ; 99(23): 14670-5, 2002 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-12407181

RESUMO

A43, an essential subunit of yeast RNA polymerase I (pol I), interacts with Rrn3, a class I general transcription factor required for rDNA transcription. The pol I-Rrn3 complex is the only form of enzyme competent for promoter-dependent transcription initiation. In this paper, using biochemical and genetic approaches, we demonstrate that the A43 polypeptide forms a stable heterodimer with the A14 pol I subunit and interacts with the common ABC23 subunit, the yeast counterpart of the omega subunit of bacterial RNA polymerase. We show by immunoelectronic microscopy that A43, ABC23, and A14 colocalize in the three-dimensional structure of the pol I, and we demonstrate that the presence of A43 is required for the stabilization of both A14 and ABC23 within the pol I. Because the N-terminal half of A43 is clearly related to the pol II Rpb7 subunit, we propose that the A43-A14 pair is likely the pol I counterpart of the Rpb7-Rpb4 heterodimer, although A14 distinguishes from Rpb4 by specific sequence and structure features. This hypothesis, combined with our structural data, suggests a new localization of Rpb7-Rpb4 subunits in the three-dimensional structure of yeast pol II.


Assuntos
RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , DNA Ribossômico/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Subunidades Proteicas/metabolismo , RNA Polimerase I/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo
17.
Mol Cell ; 9(4): 713-23, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11983164

RESUMO

Genome-wide studies have recently revealed the unexpected complexity of the genetic response to apparently simple physiological changes. Here, we show that when yeast cells are exposed to Cd(2+), most of the sulfur assimilated by the cells is converted into glutathione, a thiol-metabolite essential for detoxification. Cells adapt to this vital metabolite requirement by modifying globally their proteome to reduce the production of abundant sulfur-rich proteins. In particular, some abundant glycolytic enzymes are replaced by sulfur-depleted isozymes. This global change in protein expression allows an overall sulfur amino acid saving of 30%. This proteomic adaptation is essentially regulated at the mRNA level. The main transcriptional activator of the sulfate assimilation pathway, Met4p, plays an essential role in this sulfur-sparing response.


Assuntos
Cádmio/farmacologia , Proteínas de Ligação a DNA/fisiologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glutationa/biossíntese , Isoenzimas/fisiologia , Proteoma , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Enxofre/metabolismo , Transativadores/fisiologia , Adaptação Fisiológica/genética , Aldeído Desidrogenase/biossíntese , Aldeído Desidrogenase/genética , Fatores de Transcrição de Zíper de Leucina Básica , Cisteína/metabolismo , Eletroforese em Gel Bidimensional , Glutationa/genética , Isoenzimas/biossíntese , Isoenzimas/genética , Metionina/metabolismo , Piruvato Descarboxilase/biossíntese , Piruvato Descarboxilase/genética , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica/efeitos dos fármacos
18.
Mol Cell Biol ; 22(1): 298-308, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11739742

RESUMO

Yeast transcription factor IIIC (TFIIIC) plays a key role in assembling the transcription initiation factor TFIIIB on class III genes after TFIIIC-DNA binding. The second largest subunit of TFIIIC, tau131, is thought to initiate TFIIIB assembly by interacting with Brf1/TFIIIB70. In this work, we have analyzed a TFIIIC mutant (tau131-DeltaTPR2) harboring a deletion in tau131 removing the second of its 11 tetratricopeptide repeats. Remarkably, this thermosensitive mutation was selectively suppressed in vivo by overexpression of B"/TFIIIB90, but not Brf1 or TATA-binding protein. In vitro, the mutant factor preincubated at restrictive temperature bound DNA efficiently but lost transcription factor activity. The in vitro transcription defect was abolished at high concentrations of B" but not Brf1. Copurification experiments of baculovirus-expressed proteins confirmed a direct physical interaction between tau131 and B". tau131, therefore, appears to be involved in the recruitment of both Brf1 and B".


Assuntos
Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA , Fatores de Transcrição TFIII/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Heparina/farmacologia , Humanos , Dados de Sequência Molecular , Mutação , Subunidades Proteicas , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Temperatura , Fator de Transcrição TFIIIB , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição TFIII/química , Fatores de Transcrição TFIII/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...