Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 40(3): 1074-1083, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32936064

RESUMO

Copper(II) and zinc(II) complexes of the type [ML(AcO)2.H2O] were synthesized from bidentate-morpholine based Schiff base ligand (L - morpholinopropylimino)methyl)-6-methoxyphenol). The prepared ligand, copper(II) and zinc(II) complexes were characterized by elemental analysis, ESI-MS, 1H-NMR, FT-IR, UV-Visible, ESR and spectrometric methods. The elemental and ESI-MS results have been established that the prepared ligand and complexes possess 1:1 stoichiometric ratio. 1H-NMR and FT-IR results have been suggested that azomethine nitrogen and morpholine ring nitrogen atoms are coordinated with Cu(II) and Zn(II) metal ions. UV-Visible, ESI-MS and ESR spectroscopic results have been supported that the proposed structure of Cu(II) and Zn(II) complexes possess square pyramidal geometry. In order to confirm the proposed square pyramidal geometry of prepared complexes by DFT calculation has been studied. DNA binding ability of Cu(II) and Zn(II) complexes have been studied by electronic absorption and viscometric methods. These results reveal that Cu(II) and Zn(II) complexes interact with CT-DNA by the way of groove binding mode. Molecular docking studies result shows that synthesized compounds has better binding ability. The in vitro antioxidant activities of ligand, Cu(II) and Zn(II) complexes have been investigated by using the DPPH assay. The result shows that synthesized compounds have good radical scavenging activity against DPPH radical. Antimicrobial activities of synthesized ligand and its complexes have been tested against selected bacterial (gram positive & gram negative) and fungal species. The results reveal that Cu(II) and Zn(II) have good antimicrobial activity than ligand.Communicated by Ramaswamy H. Sarma.


Assuntos
Complexos de Coordenação , Complexos de Coordenação/química , Cobre/química , Teoria da Densidade Funcional , Ligantes , Simulação de Acoplamento Molecular , Morfolinas/farmacologia , Bases de Schiff/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Zinco/química
2.
J Biomol Struct Dyn ; 40(21): 10715-10729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34243683

RESUMO

In this work, interactions of pyrimidine derivative Schiff base ligand (DMPMM) were studied and its stabilized powder nickel nanoparticles (DMPMM-NiNPs) were synthesized and various biological studies were evaluated. DNA binding studies of CT-DNA with prepared compounds in Tris-HCl/NaCl buffer were carried out by traditional UV-Visible and fluorescence spectroscopic methods, viscosity measurements and cyclic voltammetry. Results showed that the small scale of DMPMM had less activity to interact with biological systems and when it assembled on nickel nanoparticles surface the activity increased. Thermal denaturation and sonochemical denaturation studies of DNA with the presence and the absence of our compounds also were done by UV-Visible spectroscopic method and its results indicated that the synthesized compounds increased the denaturation temperature. BSA binding studies of synthesized compounds were done by UV-Visible and fluorescence spectroscopy. Molecular docking of prepared ligand and its nanoparticles with biomolecules (DNA and BSA) were studied. Antimicrobial studies of the DMPMM and DMPMM-NiNPs were carried out by Agar-Agar well diffusion method. Anticancer studies results evidenced that the synthesized DMPMM-NiNPs had good selectivity to control the growth of cancer cells without damaging the normal cells. Various antioxidant scavenging studies results have shown that DMPMM and DMPMM-NiNPs have significant antioxidant activity. HighlightsStable and solid nickel nanoparticles were prepared.The size of the prepared nickel nanoparticles was nearly 3 to 8 nm.Organic ligand capped nickel nanoparticles interacted with DNA and BSA.Ni nanoparticles increased the denaturation temperature of DNA.It was found to have good anticancer activity with fewer side effects than cisplatin.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Complexos de Coordenação , Nanopartículas , Bases de Schiff/farmacologia , Bases de Schiff/química , Níquel/química , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Antioxidantes/química , Ligantes , Ágar , Antineoplásicos/farmacologia , Antineoplásicos/química , DNA/química , Pirimidinas/farmacologia , Pirimidinas/química , Nanopartículas/química , Complexos de Coordenação/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...