Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(1 Pt 1): 011712, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16907116

RESUMO

We study the undulations instability, also known as the Helfrich-Hurault or layers buckling effect, in a cholesteric liquid crystal confined between two parallel plates and caused by an electric field applied along the normal to layers. The cholesteric pitch is much smaller than the cell thickness but sufficiently large for optical study. The three-dimensional patterns of the undulating layers in the bulk and at the surfaces of the cells are determined by fluorescence confocal polarizing microscopy. We demonstrate that the finite surface anchoring at the bounding plates plays a crucial role in the system behavior both near and well above the undulations threshold. The displacement of the layers immediately above the undulation threshold is much larger than the value expected from the theories that assume an infinitely strong surface anchoring. We describe the experimentally observed features by taking into account the finite surface anchoring at the bounding plates and using Lubensky-de Gennes coarse-grained elastic theory of cholesteric liquid crystals. Fitting the data allows us to determine the polar anchoring coefficient Wp and shows that Wp varies strongly with the type of substrates. As the applied field increases well above the threshold value Ec, the layers profile changes from sinusoidal to the sawtooth one. The periodicity of distortions increases through propagation of edge dislocations in the square lattice of the undulations pattern. At E approximately 1.9Ec a phenomenon is observed: the two-dimensional square lattice of undulations transforms into the one-dimensional periodic stripes. The stripes are formed by two sublattices of defect walls of parabolic shape. The main reason for the structure is again the finite surface anchoring, as the superposition of parabolic walls allows the layers to combine a significant tilt in the bulk of the cell with practically unperturbed orientation of layers near the bounding plates.

2.
Opt Lett ; 30(4): 349-51, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15762424

RESUMO

We propose switchable two-dimensional (2D) diffractive gratings with periodic refractive-index modulation arising from layer undulations in cholesteric liquid crystals. The cholesteric cell can be switched between two states: (1) flat layers of a planar cholesteric texture and (2) a square lattice of periodic director modulation associated with layer undulations that produces 2D diffraction patterns. The intensities of the diffraction maxima can be tuned by changing the applied field. The diffractive properties can be optimized for different wavelengths by appropriately choosing cholesteric pitch, cell thickness, and surface treatment.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(6 Pt 1): 061707, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16485964

RESUMO

We study the phase diagram of director structures in cholesteric liquid crystals of negative dielectric anisotropy in homeotropic cells of thickness d which is smaller than the cholesteric pitch p. The basic control parameters are the frustration ratio d/p and the applied voltage U. Upon increasing U, the direct transition from completely unwound homeotropic structure to the translationally invariant configuration (TIC) with uniform in-plane twist is observed at small d/p < or = 0.5. Cholesteric fingers that can be either isolated or arranged periodically occur at 0.5 < or = d/p<1 and at the intermediate U between the homeotropic unwound and TIC structures. The phase boundaries are also shifted by (1) rubbing of homeotropic substrates that produces small deviations from the vertical alignment; (2) particles that become nucleation centers for cholesteric fingers; (3) voltage driving schemes. A novel reentrant behavior of TIC is observed in the rubbed cells with frustration ratios 0.6 < or = d/p < or = 0.75, which disappears with adding nucleation sites or using modulated voltages. In addition, fluorescence confocal polarizing microscopy (FCPM) allows us to directly and unambiguously determine the three-dimensional director structures. For the cells with strictly vertical alignment, FCPM confirms the director models of the vertical cross sections of four types of fingers previously either obtained by computer simulations or proposed using symmetry considerations. For rubbed homeotropic substrates, only two types of fingers are observed, which tend to align along the rubbing direction. Finally, the new means of control are of importance for potential applications of the cholesteric structures, such as switchable gratings based on periodically arranged fingers and eyewear with tunable transparency based on TIC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...