Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1176091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37565086

RESUMO

Background: Information on efficacy of a novel bivalent vaccine containing porcine circovirus type 2d (PCV2d) and Mycoplasma hyopneumoniae. Objective: To evaluate bivalent vaccine for efficacy under experimental conditions. Animals: Clinically healthy 35 weaned piglets at 18 days of age were used. Methods: A 2.0 mL dose of bivalent vaccine was administered intramuscularly to pigs at 21 days of age in accordance with the manufacturer's instructions. The pigs were challenged at 42 days of age either intranasally with PCV2d, or intratracheally with M. hyopneumoniae, or with both. Results: Vaccinated-challenged pigs improved the growth performance compared to pigs that were unvaccinated and then, challenged. Vaccinated-challenged pigs elicited a significant amount of protective immunity for PCV2d-specific neutralizing antibodies and interferon-γ secreting cells (IFN-γ-SC) as well as for M. hyopneumoniae-specific IFN-γ-SC compared to unvaccinated/challenged pigs. Induction of systemic cellular and humoral immune responses from bivalent vaccination reduced the viral and mycoplasmal loads in the blood and larynx. Vaccination and challenge simultaneously reduced both lung and lymphoid lesion severity when compared to unvaccinated-challenged pigs. Discussion: The results of this study demonstrated that the evaluated bivalent PCV2d and M. hyopneumoniae vaccine was efficacious in protecting pigs from the most predominant PCV2d genotype in the field today, as evaluated with a dual PCV2d and M. hyopneumoniae challenge under experimental conditions.

2.
J Appl Microbiol ; 133(3): 2074-2082, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35737750

RESUMO

AIMS: This study aimed to investigate the molecular characterization and antimicrobial susceptibility of Corynebacterium pseudotuberculosis from skin abscesses of Korean native black goats (KNBG, Capra hircus coreanae) in South Korea. METHODS AND RESULTS: A total of 83 isolates were recovered from skin abscesses of KNBG. Of these isolates, 74 isolates were identified as C. pseudotuberculosis by phospholipase D (PLD) gene-based PCR assay. Each of the isolates possessed all 18 virulence genes (FagA, FagB, FagC, FagD, SigE, SpaC, SodC, PknG, NanH, OppA, OppB, OppC, OppD, OppF, CopC, NrdH and CpaE). The genetic diversity of C. pseudotuberculosis isolates was assessed by the phylogenetic analysis using the concatenated sequences (3073 bp) of five housekeeping genes (fusA, dnaK, infB, groeL1 and leuA) for investigating their genetic diversity. In the results, the isolates belonged to three groups: group 1 (67 isolates), group 2 (one isolate) and group 3 (six isolates) within biovar ovis. However, the groups exhibited low genetic diversity (0.20%-0.41%). In the antimicrobial susceptibility test, most isolates were susceptible to tetracycline, vancomycin, chloramphenicol, ciprofloxacin, erythromycin, enrofloxacin, cefoxitin, ampicillin, gentamycin, cephalothin and doxycycline, whereas they were not susceptible to cefotaxime, trimethoprim and streptomycin. CONCLUSION: This results suggest the involvement of relatively few clones of C. pseudotuberculosis in Korea. Further, present isolates can threaten public health due to potentially virulent strains with all 18 virulence genes and non-susceptible strains to clinically important antibiotics (CIA) and highly important antibiotics. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first to investigate the genetic diversity and potential pathogenicity of C. pseudotuberculosis biovar ovis isolates from skin abscesses of KBNG in South Korea, and could provide useful information in controlling its infections.


Assuntos
Corynebacterium pseudotuberculosis , Abscesso/veterinária , Animais , Antibacterianos/farmacologia , Corynebacterium pseudotuberculosis/genética , Cabras/microbiologia , Filogenia , Ovinos
3.
Arch Virol ; 167(2): 425-439, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35079900

RESUMO

To date, few studies related to the evaluation of the pathogenicity of different PRRSV isolates using a reproductive model have been undertaken, and the main focus has remained on respiratory models using young pigs. This study aimed to evaluate the pathogenicity of two PRRSV-1 isolates (D40 and CBNU0495) and two PRRSV-2 isolates (K07-2273 and K08-1054) in a reproductive model. Pregnant sows were experimentally infected with PRRSV at gestational day 93 or used as an uninfected negative control. Sera were collected at 0, 3, 7, 14, and 19 days post-challenge (dpc) for virological and serological assays. At 19 dpc, all sows were euthanized, and their fetuses were recovered by performing cesarean section and immediately euthanized for sample collection. Here, compared to the other isolates, the CBNU0495 isolate replicated most efficiently in the pregnant sows, and K07-2273 produced the highest rate of reproductive failure even though it did not replicate as efficiently as the other isolates in sows and fetuses, indicating that vertical transmission and reproductive failure due to PRRSV infection do not have any significant correlation with the viral loads in samples from sows and fetuses. Similarly, the viral loads and the histopathological lesions did not show any correlation with each other, as the PRRSV-2-infected groups displayed more prominent and frequent histopathological lesions with lower viral loads than the PRRSV-1-infected groups. However, viral loads in the myometrium/endometrium might be related to the spreading of PRRSV in the fetuses, which affected the birth weight of live fetuses. This study contributes to a better understanding of the pathogenicity of the most prevalent Korean PRRSVs in a reproductive model.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Cesárea , Feminino , Transmissão Vertical de Doenças Infecciosas , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Gravidez , Suínos , Virulência
4.
Vet Immunol Immunopathol ; 240: 110318, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34479105

RESUMO

The present investigation describes a formulation of a live attenuated Salmonella Gallinarium (SG) vaccine candidate against H9N2 influenza and SG infections in chickens. The formulation consists of an equal ratio of three strains, JOL2158, JOL2113, and JOL2074, which deliver hemagglutinin; HA1, HA2, and matrix protein 2 (M2e):: CD154 fusion (M2eCD154) antigens designed for broad protection against the field-matched H9N2 serotypes. The vaccine was completely safe at the average inoculation doses of 108 and 109 CFU/bird/0.2 mL in phosphate-buffered saline (PBS) used in the study. Bird immunization as a single oral inoculation could significantly engage humoral IgG, mucosal IgA, and cell-mediated immune responses against each immunized antigen, compared to the PBS control group (P < 0.05). The immunological correlates were comparable with the level of protection derived against the H9N2 and SG challenge, which resulted in significant protection against the H9N2 but only partial protection against the SG challenge as we compared against the PBS control group. The level of protection against H9N2 was investigated by determining the viral copy number and histopathological assessment of lung tissues. The results indicated a significant reduction in viral activity and recovery of lung inflammation towards the 14th-day post-challenge in a dose-dependent manner. Upon SG challenge, birds in the PBS control group experienced 100 % mortality, while 40 % and 70 % protection was observed in the SG-immunized groups for each respective dose of inoculation. The present SG-mediated immunization strategy proposes a rapid and reliable vaccine development process that can be effectively used against influenza strains such as H9N2 and holds the potential to minimize fowl typhoid caused by SG strains, mitigating two economically important diseases in the poultry industry.


Assuntos
Vacinas Bacterianas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Influenza Aviária/prevenção & controle , Salmonelose Animal/prevenção & controle , Vacinas Virais , Administração Oral , Animais , Vacinas Bacterianas/administração & dosagem , Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Imunização/veterinária , Vírus da Influenza A Subtipo H9N2 , Salmonella , Desenvolvimento de Vacinas , Vacinas Virais/administração & dosagem
5.
Vet Microbiol ; 245: 108696, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32456812

RESUMO

This study examined the presence of Treponema in lesions using conventional PCR detection methods and investigated the microbiome by performing high-throughput DNA sequencing. Twenty-nine bovine digital dermatitis (BDD) lesions were collected from 25 dairy farms in South Korea that were tested by PCR amplification using sets of one universal, one genus-specific, and three species specific Treponema PCR primers. Three BDD samples were randomly selected and normal tissue samples were submitted for 16S rRNA sequencing using the Illumina MiSeq platform. The dominant phylum present in all tested BDD lesions was Spirochaetes with a mean relative abundance of 46.9 %, and Treponema was the most abundant genus. Spirochaetes abundance was followed by the phyla Tenericutes and Bacteroidetes with 14.1 % and 11.8 % mean abundances, respectively. Co-infecting bacteria from phyla Tenericutes and Bacteroidetes may be involved in the progression of BDD. Bovine digital dermatitis infection is polymicrobial in nature, but Treponema spp. are the main etiologic agents of the disease. In the microbiome results, Treponema pedis had the highest mean relative abundance (20.9 %) in the BDD lesions in this study followed by T. denticola, T. medium, T. lecithinolyricum, Spirochaeta africana, and Sediminispirochaeta bajacalifoniensis. All 29 samples were positive in the genus-specific Treponema PCR results. The species-specific PCR resulted in 75.9 %, 86.2 %, and 69.0 % of samples in groups T. medium/T. vincentii-like, T. phagedenis-like, and T. pedis, respectively. Understanding how these microorganisms mutually interact in the host during certain stages of infection may help in the development of better practices for controlling BDD.


Assuntos
Doenças dos Bovinos/microbiologia , Coinfecção/veterinária , Dermatite Digital/microbiologia , Pé/microbiologia , Treponema/classificação , Infecções por Treponema/veterinária , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bovinos/microbiologia , Coinfecção/microbiologia , DNA Bacteriano/genética , Indústria de Laticínios , Feminino , Pé/patologia , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Treponema/isolamento & purificação , Treponema/patogenicidade
6.
BMC Vet Res ; 16(1): 127, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375805

RESUMO

BACKGROUND: Multifocal spherical nonstaining cavities and gram-positive, rod-shaped, and endospore-forming bacteria were found in the liver of a sow that died suddenly. Clostridium novyi type B was identified and isolated from the sudden death case, and the isolate was characterized by molecular analyses and bioassays in the current study. RESULTS: C. novyi was isolated from the liver of a sow that died suddenly and was confirmed as C. novyi type B by differential PCR. The C. novyi isolate fermented glucose and maltose and demonstrated lecithinase activity, and the cell-free culture supernatant of the C. novyi isolate exhibited cytotoxicity toward Vero cells, demonstrating that the isolate produces toxins. In addition, whole-genome sequencing of the C. novyi isolate was performed, and the complete sequences of the chromosome (2.29 Mbp) and two plasmids (134 and 68 kbp) were identified for the first time. Based on genome annotation, 7 genes were identified as glycosyltransferases, which are known as alpha toxins; 23 genes were found to be related to sporulation; 12 genes were found to be related to germination; and 20 genes were found to be related to chemotaxis. CONCLUSION: C. novyi type B was isolated from a sow in a sudden death case and confirmed by biochemical and molecular characterization. Various virulence-associated genes were identified for the first time based on whole-genome sequencing.


Assuntos
Infecções por Clostridium/veterinária , Clostridium/genética , Clostridium/isolamento & purificação , Doenças dos Suínos/microbiologia , Animais , Chlorocebus aethiops , Clostridium/metabolismo , Infecções por Clostridium/microbiologia , Morte Súbita/veterinária , Feminino , Genoma Bacteriano , Fígado/microbiologia , Plasmídeos/genética , Reação em Cadeia da Polimerase/veterinária , República da Coreia , Suínos , Células Vero
7.
Molecules ; 24(5)2019 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-30832429

RESUMO

DiNap [(E)-1-(2-hydroxy-4,6-dimethoxyphenyl)-3-(naphthalen-1-yl)prop-2-en-1-one], an analog of a natural product (the chalcone flavokawain), was synthesized and characterized in this study. Porcine reproductive and respiratory syndrome virus (PRRSV) is the most challenging threat to the swine industry worldwide. Currently, commercially available vaccines are ineffective for controlling porcine reproductive and respiratory syndrome (PRRS) in pigs. Therefore, a pharmacological intervention may represent an alternative control measure for PRRSV infection. Hence, the present study evaluated the effects of DiNap on the replication of VR2332 (a prototype strain of type 2 PRRSV). Initially, in vitro antiviral assays against VR2332 were performed in MARC-145 cells and porcine alveolar macrophages (PAMs). Following this, a pilot study was conducted in a pig model to demonstrate the effects of DiNap following VR2332 infection. DiNap inhibited VR2332 replication in both cell lines in a dose-dependent manner, and viral growth was completely suppressed at concentrations ≥0.06 mM, without significant cytotoxicity. Consistent with these findings, in the pig study, DiNap also reduced viral loads in the serum and lungs and enhanced the weight gain of pigs following VR2332 infection, as indicated by comparison of the DiNap-treated groups to the untreated control (NC) group. In addition, DiNap-treated pigs had fewer gross and microscopic lesions in their lungs than NC pigs. Notably, virus transmission was also delayed by approximately 1 week in uninfected contact pigs within the same group after treatment with DiNap. Taken together, these results suggest that DiNap has potential anti-PRRSV activity and could be useful as a prophylactic or post-exposure treatment drug to control PRRSV infection in pigs.


Assuntos
Produtos Biológicos/química , Flavonoides/química , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Animais , Produtos Biológicos/administração & dosagem , Produtos Biológicos/síntese química , Chalcona/administração & dosagem , Chalcona/síntese química , Chalcona/química , Flavonoides/administração & dosagem , Flavonoides/síntese química , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/virologia , Macrófagos Alveolares/efeitos dos fármacos , Projetos Piloto , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos/virologia , Carga Viral
8.
J Vet Med Sci ; 80(6): 851-860, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29618667

RESUMO

The broad-spectrum lytic capability of Salmonella bacteriophages against various Salmonella species was evaluated to determine their potential as an alternative for antibiotics, and the safety and preventive effects of the bacteriophages were assessed on mice and pigs. Four bacteriophage cocktails were prepared using 13 bacteriophages, and the lytic capability of the four bacteriophage cocktails was tested using Salmonella reference strains and field isolates. Bacteriophage cocktail C (SEP-1, SGP-1, STP-1, SS3eP-1, STP-2, SChP-1, SAP-1, SAP-2; ≥109 pfu/ml) showed the best lytic activity against the Salmonella reference strains (100% of 34) and field isolates (92.5% of 107). Fifty mice were then orally inoculated with bacteriophage cocktail C to determine the distribution of bacteriophages in various organs, blood and feces. The effects of bacteriophages on Salmonella infection in weaned pigs (n=15) were also evaluated through an experimental challenge with Salmonella Typhimurium after treatment with bacteriophage cocktail C. All mice exhibited distribution of the bacteriophages in all organs, blood and feces until 15 days post infection (dpi). After 35 dpi, bacteriophages were not detected in any of these specimens. As demonstrated in a pig challenge study, treatment with bacteriophage cocktail C reduced the level of Salmonella shedding in feces. The metagenomic analyses of these pig feces also revealed that bacteriophage treatment decreased the number of species of the Enterobacteriaceae family without significant disturbance to the normal fecal flora. This study showed that bacteriophages effectively controlled Salmonella in a pig challenge model and could be a good alternative for antibiotics to control Salmonella infection.


Assuntos
Terapia por Fagos/veterinária , Infecções por Salmonella/terapia , Fagos de Salmonella , Doenças dos Suínos/terapia , Animais , Bacteriólise , Bacteriófagos , Fezes/microbiologia , Feminino , Metagenoma , Camundongos , Camundongos Endogâmicos BALB C , Salmonella typhimurium , Suínos , Desmame
9.
J Virol ; 90(9): 4454-4468, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26889041

RESUMO

UNLABELLED: In a previous study, ribavirin-resistant porcine reproductive and respiratory syndrome virus (PRRSV) mutants (RVRp13 and RVRp22) were selected, and their resistance against random mutation was shown in cultured cells. In the present study, these ribavirin-resistant mutants were evaluated in terms of their genetic and phenotypic stability during three pig-to-pig passages in comparison with modified live virus (MLV) (Ingelvac PRRS MLV). Pigs challenged with RVRp22 had significantly lower (P< 0.05) viral loads in sera and tissues than pigs challenged with MLV or RVRp13 at the first passage, and the attenuated replication of RVRp22 was maintained until the third passage. Viral loads in sera and tissues dramatically increased in pigs challenged with MLV or RVRp13 during the second passage. Consistently, all five sequences associated with the attenuation of virulent PRRSV in RVRp13 and MLV quickly reverted to wild-type sequences during the passages, but two attenuation sequences were maintained in RVRp22 even after the third passage. In addition, RVRp22 showed a significantly lower (P< 0.001) mutation frequency in nsp2, which is one of the most variable regions in the PRRSV genome, than MLV. Nine unique mutations were found in open reading frames (ORFs) 1a, 2, and 6 in the RVRp22 genome based on full-length sequence comparisons with RVRp13, VR2332 (the parental virus of RVRp13 and RVRp22), and MLV. Based on these results, it was concluded that RVRp22 showed attenuated replication in pigs; further, because of the high genetic stability of RVRp22, its attenuated phenotype was stable even after three sequential passages in pigs. IMPORTANCE: PRRSV is a rapidly evolving RNA virus. MLV vaccines are widely used to control PRRS; however, there have been serious concerns regarding the use of MLV as a vaccine virus due to the rapid reversion to virulence during replication in pigs. As previously reported, ribavirin is an effective antiviral drug against many RNA viruses. Ribavirin-resistant mutants reemerged by escaping lethal mutagenesis when the treatment concentration was sublethal, and those mutants were genetically more stable than parental viruses. In a previous study, two ribavirin-resistant PRRSV mutants (RVRp13 and RVRp22) were selected, and their higher genetic stability was shown in vitro Consequently, in the present study, both of the ribavirin-resistant mutants were evaluated in terms of their genetic and phenotypic stability in vivo RVRp22 was found to exhibit higher genetic and phenotypic stability than MLV, and nine unique mutations were identified in the RVRp22 genome based on a full-length sequence comparison with the RVRp13, VR2332, and MLV genomes.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Fenótipo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Ribavirina/farmacologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linhagem Celular , Genoma Viral , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Testes de Sensibilidade Microbiana , Mutação , Taxa de Mutação , Fases de Leitura Aberta , Síndrome Respiratória e Reprodutiva Suína/patologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Suínos , Carga Viral , Viremia , Virulência/genética , Replicação Viral/efeitos dos fármacos
10.
J Vet Med Sci ; 78(1): 133-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26290128

RESUMO

Two commercial PRRSV ELISA kits (IDEXX and Bionote) were evaluated for their sensitivity and specificity using 476 PRRS-positive serum samples collected from 7 animal challenge experiments and 1,000 PRRS-negative sera. Both ELISA kits exhibited 100% sensitivity with sera collected 14 to 42 days post-infection, and the results from the kits were highly correlated (R(2)=0.9207). The specificity of IDEXX or Bionote kit was 99.9% or 99.7%, respectively. In addition, the Bionote ELISA kit was used to examine 100 sera that were determined to be falsely positive either by IDEXX 2XR or 3XR ELISA, and only 7 of these samples were found to be positive. These results indicate that both ELISA kits exhibited similar levels of sensitivity and specificity and would complement one another for the verification of false-positive samples.


Assuntos
Ensaio de Imunoadsorção Enzimática/veterinária , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Anticorpos Antivirais/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Kit de Reagentes para Diagnóstico/veterinária , Sensibilidade e Especificidade , Suínos/imunologia , Suínos/virologia
11.
Vet Microbiol ; 182: 187-95, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26711047

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is the most economically important disease to the swine industry, and effective prevention strategy for this disease is still required. Guanylate-binding protein 1 (GBP1) and myxovirus resistance protein 1 (Mx1) are two important proteins belonging to the GTPase superfamily that have been previously described to show antiviral effects. CD163 is considered the most important receptor for PRRSV attachment and internalization. Therefore, the aim of the present study was to evaluate the effects of these genes on host resistance against PRRSV infection in conjunction with the host immune response following PRRSV challenge. The results showed that pigs with AG genotype for the GBP1 exon2 exhibited a significantly higher average daily weight gain (ADWG) and lower average viremia than AA or GG genotype. Furthermore, pigs harbouring the AG genotype for the GBP1 gene presented greater CD4(+)CD25(+) and CD8(+)CD25(+) T cell populations at 4 and 18 days post challenge (dpc), respectively, as compared with other genotypes whereas pigs with CC genotype for the CD163 gene displayed significantly higher nucleocapsid-specific antibody titers at 11dpc. However, pigs with a single 11-bp deletion or insertion in the Mx1 gene did not show significant differences in either weight gain or viremia. Based on these results, we concluded that GBP1 is most significantly associated with resistance against PRRSV infection and efficient T cell activation in pigs.


Assuntos
Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Proteínas de Ligação ao GTP/genética , Interações Hospedeiro-Patógeno/genética , Proteínas de Resistência a Myxovirus/genética , Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Receptores de Superfície Celular/genética , Animais , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Proteínas de Ligação ao GTP/imunologia , Genótipo , Interações Hospedeiro-Patógeno/imunologia , Ativação Linfocitária , Proteínas de Resistência a Myxovirus/imunologia , Polimorfismo Genético , Síndrome Respiratória e Reprodutiva Suína/imunologia , Receptores de Superfície Celular/imunologia , Suínos , Linfócitos T/imunologia , Viremia/genética , Viremia/imunologia , Aumento de Peso
12.
J Microbiol Biotechnol ; 22(1): 114-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22297227

RESUMO

The biological control efficacy of a greenhouse soil bacterial mixture of Lactobacillus farraginis, Bacillus cereus, and Bacillus thuringiensis strains with antinematode activity was evaluated against the root-knot nematode Meloidogyne incognita. Two control groups planted in soil drenched with sterile distilled water or treated with the broadspectrum carbamate pesticide carbofuran were used for comparison. The results suggest that the bacterial mixture is effective as a biocontrol agent against the root-knot nematode.


Assuntos
Bacillus cereus/patogenicidade , Bacillus thuringiensis/patogenicidade , Cucurbitaceae/parasitologia , Lactobacillus/patogenicidade , Controle Biológico de Vetores/métodos , Microbiologia do Solo , Tylenchoidea/microbiologia , Animais , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Tylenchoidea/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...