Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 9276, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286700

RESUMO

A novel frictional drag reducing self-polishing copolymer (FDR-SPC) was first developed by the authors. The FDR-SPC is a special derivative of an SPC that was designed to achieve skin frictional drag reduction in turbulent water flow by releasing polyethylene glycol (PEG) into water through a hydrolysis reaction. Thus, the FDR-SPC coating acts as a continuous medium accommodating countless, molecular-level polymer injectors. However, direct evidence of such PEG release has not yet been demonstrated. Here, we report the results of in situ PEG concentration measurement based on the planar laser-induced fluorescence (PLIF) method. Polyethylene glycol methacrylate (PEGMA) was probed by the fluorescent functional material dansyl, and the fluorescence intensity from dansyl-PEG was then measured to quantify the concentration in the flow. The near-wall concentration of dansyl-PEG is observed to range from 1 to 2 ppm depending on the flow speed, which corroborates the existence of a drag reducing function for the FDR-SPC. In the concurrent measurement of skin friction, the present FDR-SPC specimen exhibited a skin friction reduction ratio of 9.49% at the freestream flow speed [Formula: see text]. In the comparative experiment of dansyl-PEGMA solution injection, the skin friction was found to decrease by 11.9%, which is in reasonable accordance with that for the FDR-SPC.

2.
Materials (Basel) ; 15(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35009169

RESUMO

Metal-organic frameworks (MOFs), a class of crystalline, porous, 3D materials synthesized by the linking of metal nodes and organic linkers are rapidly emerging as attractive materials in gas storage, electrodes in batteries, super-capacitors, sensors, water treatment, and medicine etc. However the utility of MOFs in coatings, especially in marine coatings, has not been thoroughly investigated. In this manuscript we report the first study on silver MOF (Ag-MOF) functionalized acrylic polymers for marine coatings. A simple and rapid microwave technique was used to synthesize a two-dimensional platelet structured Ag-MOF. Field tests on the MOF reinforced marine coatings exhibited an antifouling performance, which can be attributed to the inhibition of marine organisms to settle as evidenced by the anti-bacterial activity of Ag-MOFs. Our results indicate that MOF based coatings are highly promising candidates for marine coatings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...