Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(1): 108617, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38188509

RESUMO

To investigate whether the defects in transient receptor potential canonical 4 (TRPC4), which is strongly expressed in the hippocampus, are implicated in ASD, we examined the social behaviors of mice in which Trpc4 was deleted (Trpc4-/-). Trpc4-/- mice displayed the core symptoms of ASD, namely, social disability and repetitive behaviors. In microarray analysis of the hippocampus, microRNA (miR)-138-2, the precursor of miR-138, was upregulated in Trpc4-/- mice. We also found that binding of Matrin3 (MATR3), a selective miR-138-2 binding nuclear protein, to miR-138-2 was prominently enhanced, resulting in the downregulation of miR-138 in Trpc4-/- mice. Some parameters of the social defects and repetitive behaviors in the Trpc4-/- mice were rescued by increased miR-138 levels following miR-138-2 infusion in the hippocampus. Together, these results suggest that Trpc4 regulates some signaling components that oppose the development of social behavioral deficits through miR-138 and provide a potential therapeutic strategy for ASD.

2.
BMB Rep ; 55(5): 238-243, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35410641

RESUMO

Autism or autism spectrum disorder (ASD) is a behavioral syndrome characterized by persistent deficits in social interaction, and repetitive patterns of behavior, interests, or activities. The gene encoding Methyl-CpG binding protein 2 (MeCP2) is one of a few exceptional genes of established causal effect in ASD. Although genetically engineered mice studies may shed light on how MeCP2 loss affects synaptic activity patterns across the whole brain, such studies are not considered practical in ASD patients due to the overall level of impairment, and are technically challenging in mice. For the first time, we show that hippocampal MeCP2 knockdown produces behavioral abnormalities associated with autism-like traits in rats, providing a new strategy to investigate the efficacy of therapeutics in ASD. Ketamine, an N-Methyl-D-aspartate (NMDA) blocker, has been proposed as a possible treatment for autism. Using the MeCP2 knockdown rats in conjunction with a rat model of valproic acid (VPA)-induced ASD, we examined gene expression and ASD behaviors upon ketamine treatment. We report that the core symptoms of autism in MeCP2 knockdown rats with social impairment recovered dramatically following a single treatment with ketamine. [BMB Reports 2022; 55(5): 238-243].


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Ketamina , Proteína 2 de Ligação a Metil-CpG , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Ketamina/farmacologia , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Ratos
3.
Neurobiol Stress ; 15: 100373, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34401409

RESUMO

Depression is accompanied by neuronal atrophy and decreased neuroplasticity. Leucine-rich glioma-inactivated protein 1 (LGI1), a metastasis suppressor, plays an important role in the development of CNS synapses. We found that LGI1 expression was reduced in the hippocampi of mice that underwent chronic unpredictable stress (CUS), and could be rescued by the antidepressant, fluoxetine. Recombinant soluble neuritin, an endogenous protein previously implicated in antidepressant-like behaviors, elevated hippocampal LGI1 expression in a manner dependent on histone deacetylase 5 (HDAC5) phosphorylation. Accordingly, Nrn1 flox/flox ;Pomc-cre (Nrn1 cOE) mice, which conditionally overexpress neuritin, displayed increases in hippocampal LGI1 level under CUS and exhibited resilience to CUS that were blocked by hippocampal depletion of LGI1. Interestingly, neuritin-mediated LGI1 expression was inhibited by HNMPA-(AM)3, an insulin receptor inhibitor, as was neuritin-mediated HDAC5 phosphorylation. We thus establish hippocampal LGI1 as an effector of neurite outgrowth and stress resilience, and suggest that HDAC5-LGI1 plays a critical role in ameliorating pathological depression.

4.
Proc Natl Acad Sci U S A ; 116(5): 1770-1775, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30642955

RESUMO

Major depressive disorder (MDD) is a devastating disease that arises in a background of environmental risk factors, such as chronic stress, that produce reactive oxygen species (ROS) in the brain. The chronic stress-induced ROS production involves Ca2+ signals; however, the mechanism is poorly understood. Transient receptor potential melastatin type 2 (TRPM2) is a Ca2+-permeable cation channel that is highly expressed in the brain. Here we show that in animal models of chronic unpredictable stress (CUS), deletion of TRPM2 (Trpm2-/- ) produces antidepressant-like behaviors in mice. This phenotype correlates with reduced ROS, ROS-induced calpain activation, and enhanced phosphorylation of two Cdk5 targets including synapsin 1 and histone deacetylase 5 that are linked to synaptic function and gene expression, respectively. Moreover, TRPM2 mRNA expression is increased in hippocampal tissue samples from patients with MDD. Our findings suggest that TRPM2 is a key agent in stress-induced depression and a possible target for treating depression.


Assuntos
Transtorno Depressivo Maior/metabolismo , Estresse Fisiológico/fisiologia , Canais de Cátion TRPM/metabolismo , Animais , Cálcio/metabolismo , Expressão Gênica/fisiologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fosforilação/fisiologia , Espécies Reativas de Oxigênio/metabolismo
5.
Cell Rep ; 19(2): 401-412, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28402861

RESUMO

Stress causes changes in neurotransmission in the brain, thereby influencing stress-induced behaviors. However, it is unclear how neurotransmission systems orchestrate stress responses at the molecular and cellular levels. Transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel involved mainly in pain sensation, affects mood and neuroplasticity in the brain, where its role is poorly understood. Here, we show that Trpv1-deficient (Trpv1-/-) mice are more stress resilient than control mice after chronic unpredictable stress. We also found that glucocorticoid receptor (GR)-mediated histone deacetylase 2 (HDAC) 2 expression and activity are reduced in the Trpv1-/- mice and that HDAC2-regulated, cell-cycle- and neuroplasticity-related molecules are altered. Hippocampal knockdown of TRPV1 had similar effects, and its behavioral effects were blocked by HDAC2 overexpression. Collectively, our findings indicate that HDAC2 is a molecular link between TRPV1 activity and stress responses.


Assuntos
Histona Desacetilase 2/genética , Plasticidade Neuronal/genética , Estresse Fisiológico/genética , Canais de Cátion TRPV/genética , Animais , Células Cultivadas , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Histona Desacetilase 2/biossíntese , Camundongos , Camundongos Knockout , Receptores de Glucocorticoides/genética , Canais de Cátion TRPV/biossíntese
6.
Korean J Physiol Pharmacol ; 16(3): 187-92, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22802700

RESUMO

In the present study, the antinociceptive profiles of hop extract were characterized in ICR mice. Hop extract administered orally (from 25 to 100 mg/kg) showed an antinociceptive effect in a dose-dependent manner as measured in the acetic acid-induced writhing test. Antinociceptive action of hop extract was maintained at least for 60 min. Moreover, cumulative response time of nociceptive behaviors induced with intraplantar formalin injection was reduced by hop extract treatment during the 2nd phases. Furthermore, the cumulative nociceptive response time for intrathecal injection of substance P (0.7 µg) or glutamate (20 µg) was diminished by hop extract. Intraperitoneal pretreatment with naloxone (an opioid receptor antagonist) attenuated antinociceptive effect induced by hop extract in the writhing test. However, methysergide (a 5-HT serotonergic receptor antagonist) or yohimbine (an α(2)-adrenergic receptor antagonist) did not affect antinociception induced by hop extract in the writhing test. Our results suggest that hop extract shows an antinociceptive property in various pain models. Furthermore, the antinociceptive effect of hop extract may be mediated by opioidergic receptors, but not serotonergic and α(2)-adrenergic receptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...