Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 8: 100663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38222825

RESUMO

Betaine, a compound found in plants and sea foods, is known to be beneficial against non-alcoholic fatty liver disease (NAFLD), but its hepatoprotective and anti-steatogenic mechanisms have been not fully understood. In the present study, we investigated the mechanisms underlying betaine-mediated alleviation of NAFLD induced by a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) in mice, with special focus on the contribution of betaine-stimulated autophagy to NAFLD prevention. Male ICR mice were fed a CDAHFD with or without betaine (0.2-1% in drinking water) for 1 week. Betaine ameliorated the CDAHFD-induced fatty liver by restoring sulfur amino acid (SAA)-related metabolites, such as S-adenosylmethionine and homocysteine, and the phosphorylation of AMPK and ACC. In addition, it reduced the CDAHFD-induced ER stress (BiP, ATF6, and CHOP) and apoptosis (Bax, cleaved caspase-3, and cleaved PARP); however, it induced autophagy (LC3II/I and p62) which was downregulated by CDAHFD. To determine the role of autophagy in the improvement of NAFLD, chloroquine (CQ), an autophagy inhibitor, was injected into the mice fed a CDAHFD and betaine (0.5 % in drinking water). CQ did not affect SAA metabolism but reduced the beneficial effects of betaine as shown by the increases of hepatic lipids, ER stress, and apoptosis. Notably, the betaine-induced improvements in lipid metabolism determined by protein levels of p-AMPK, p-ACC, PPARα, and ACS1, were reversed by CQ. Thus, the results of this study suggest that the activation of autophagy is an important upstream mechanism for the inhibition of steatosis, ER stress, and apoptosis by betaine in NAFLD.

2.
Pharmaceuticals (Basel) ; 13(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187321

RESUMO

Soybean is known to have diverse beneficial effects against human diseases, including obesity and its related metabolic disorders. Germinated soybean embryos are enriched with bioactive phytochemicals and known to inhibit diet-induced obesity in mice, but their effect on non-alcoholic fatty liver disease (NAFLD) remains unknown. Here, we germinated soybean embryos for 24 h, and their ethanolic extract (GSEE, 15 and 45 mg/kg) was administered daily to mice fed with a high-fat diet (HFD) for 10 weeks. HFD significantly increased the weight of the body, liver and adipose tissue, as well as serum lipid markers, but soyasaponin Ab-rich GSEE alleviated these changes. Hepatic injury and triglyceride accumulation in HFD-fed mice were attenuated by GSEE via decreased lipid synthesis (SREBP1c) and increased fatty acid oxidation (p-AMPKα, PPARα, PGC1α, and ACOX) and lipid export (MTTP and ApoB). HFD-induced inflammation (TNF-α, IL-6, IL-1ß, CD14, F4/80, iNOS, and COX2) was normalized by GSEE in mice livers. In adipose tissue, GSEE downregulated white adipose tissue (WAT) differentiation and lipogenesis (PPARγ, C/EBPα, and FAS) and induced browning genes (PGC1α, PRDM16, CIDEA, and UCP1), which could also beneficially affect the liver via lowering adipose tissue-related circulating lipid levels. Thus, our results suggest that GSEE can prevent HFD-induced NAFLD via inhibition of hepatic inflammation and restoration of lipid metabolisms in both liver and adipose tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...