Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35746405

RESUMO

Virtual Reality (VR) has been adopted as a leading technology for the metaverse, yet most previous VR systems provide one-size-fits-all experiences to users. Context-awareness in VR enables personalized experiences in the metaverse, such as improved embodiment and deeper integration of the real world and virtual worlds. Personalization requires context data from diverse sources. We proposed a reusable and extensible context data collection framework, ManySense VR, which unifies data collection from diverse sources for VR applications. ManySense VR was implemented in Unity based on extensible context data managers collecting data from data sources such as an eye tracker, electroencephalogram, pulse, respiration, galvanic skin response, facial tracker, and Open Weather Map. We used ManySense VR to build a context-aware embodiment VR scene where the user's avatar is synchronized with their bodily actions. The performance evaluation of ManySense VR showed good performance in processor usage, frame rate, and memory footprint. Additionally, we conducted a qualitative formative evaluation by interviewing five developers (two males and three females; mean age: 22) after they used and extended ManySense VR. The participants expressed advantages (e.g., ease-of-use, learnability, familiarity, quickness, and extensibility), disadvantages (e.g., inconvenient/error-prone data query method and lack of diversity in callback methods), future application ideas, and improvement suggestions that indicate potential and can guide future development. In conclusion, ManySense VR is an efficient tool for researchers and developers to easily integrate context data into their Unity-based VR applications for the metaverse.


Assuntos
Realidade Virtual , Adulto , Coleta de Dados , Eletroencefalografia , Feminino , Humanos , Masculino , Interface Usuário-Computador , Adulto Jovem
2.
Sensors (Basel) ; 20(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339334

RESUMO

As the number of patients with Alzheimer's disease (AD) increases, the effort needed to care for these patients increases as well. At the same time, advances in information and sensor technologies have reduced caring costs, providing a potential pathway for developing healthcare services for AD patients. For instance, if a virtual reality (VR) system can provide emotion-adaptive content, the time that AD patients spend interacting with VR content is expected to be extended, allowing caregivers to focus on other tasks. As the first step towards this goal, in this study, we develop a classification model that detects AD patients' emotions (e.g., happy, peaceful, or bored). We first collected electroencephalography (EEG) data from 30 Korean female AD patients who watched emotion-evoking videos at a medical rehabilitation center. We applied conventional machine learning algorithms, such as a multilayer perceptron (MLP) and support vector machine, along with deep learning models of recurrent neural network (RNN) architectures. The best performance was obtained from MLP, which achieved an average accuracy of 70.97%; the RNN model's accuracy reached only 48.18%. Our study results open a new stream of research in the field of EEG-based emotion detection for patients with neurological disorders.


Assuntos
Doença de Alzheimer , Eletroencefalografia , Emoções/classificação , Aprendizado de Máquina , Redes Neurais de Computação , Doença de Alzheimer/diagnóstico , Feminino , Humanos
3.
Sensors (Basel) ; 19(20)2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31635194

RESUMO

In recent years, affective computing has been actively researched to provide a higher level of emotion-awareness. Numerous studies have been conducted to detect the user's emotions from physiological data. Among a myriad of target emotions, boredom, in particular, has been suggested to cause not only medical issues but also challenges in various facets of daily life. However, to the best of our knowledge, no previous studies have used electroencephalography (EEG) and galvanic skin response (GSR) together for boredom classification, although these data have potential features for emotion classification. To investigate the combined effect of these features on boredom classification, we collected EEG and GSR data from 28 participants using off-the-shelf sensors. During data acquisition, we used a set of stimuli comprising a video clip designed to elicit boredom and two other video clips of entertaining content. The collected samples were labeled based on the participants' questionnaire-based testimonies on experienced boredom levels. Using the collected data, we initially trained 30 models with 19 machine learning algorithms and selected the top three candidate classifiers. After tuning the hyperparameters, we validated the final models through 1000 iterations of 10-fold cross validation to increase the robustness of the test results. Our results indicated that a Multilayer Perceptron model performed the best with a mean accuracy of 79.98% (AUC: 0.781). It also revealed the correlation between boredom and the combined features of EEG and GSR. These results can be useful for building accurate affective computing systems and understanding the physiological properties of boredom.


Assuntos
Tédio , Eletroencefalografia/métodos , Aprendizado de Máquina , Adulto , Área Sob a Curva , Análise Discriminante , Feminino , Resposta Galvânica da Pele , Humanos , Masculino , Curva ROC , Inquéritos e Questionários , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...