Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 947: 174592, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38981549

RESUMO

This 20-year study (2001-2020) conducted in Jangmok Bay, Korea, assessed the intricate relationships between environmental factors and Noctiluca scintillans blooms. Granger causality tests and PCA analysis were used to assess the impact of sea surface temperature (SST), salinity, dissolved oxygen (DO) concentration, wind patterns, rainfall, and chlorophyll-a (Chl-a) concentration on bloom dynamics. The results revealed significant, albeit delayed, influences of these variables on bloom occurrence, with SST exhibiting a notable 2-month lag and salinity a 1-month lag in their impact. Additionally, the analysis highlighted the significant roles of phosphate, ammonium, and silicate, which influenced N. scintillans blooms with lags of 1 to 3 months. The PCA demonstrates how SST and wind speed during spring and summer, along with wind direction and salinity in winter, significantly impact N. scintillans blooms. We noted not only an increase in large-scale N. scintillans blooms but also a cyclical pattern of occurrence every 3 years. These findings underscore the synergistic effects of environmental factors, highlighting the complex interplay between SST, salinity, DO concentration, and weather conditions to influence bloom patterns. This research enhances our understanding of harmful algal blooms (HABs), emphasizing the importance of a comprehensive approach that considers multiple interconnected environmental variables for predicting and managing N. scintillans blooms.

2.
Adv Sci (Weinh) ; : e2402389, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867385

RESUMO

Despite the very high theoretical energy density, Li-S batteries still need to fundamentally overcome the sluggish redox kinetics of lithium polysulfides (LiPSs) and low sulfur utilization that limit the practical applications. Here, highly active and stable cathode, nitrogen-doped porous carbon nanotubes (NPCTs) decorated with NixCo1-xS2 nanocrystals are systematically synthesized as multi-functional electrocatalytic materials. The nitrogen-doped carbon matrix can contribute to the adsorption of LiPSs on heteroatom active sites with buffering space. Also, both experimental and computation-based theoretical analyses validate the electrocatalytic principles of co-operational facilitated redox reaction dominated by covalent-site-dependent mechanism; the favorable adsorption-interaction and electrocatalytic conversion of LiPSs take place subsequently by weakening sulfur-bond strength on the catalytic NiOh 2+-S-CoOh 2+ backbones via octahedral TM-S (TM = Ni, Co) covalency-relationship, demonstrating that fine tuning of CoOh 2+ sites by NiOh 2+ substitution effectively modulates the binding energies of LiPSs on the NixCo1-xS2@NPCTs surface. Noteworthy, the Ni0.261Co0.739S2@NPCTs catalyst shows great cyclic stability with a capacity of up to 511 mAh g-1 and only 0.055% decay per cycle at 5.0 C during 1000 cycles together with a high areal capacity of 2.20 mAh cm-2 under 4.61 mg cm-2 sulfur loading even after 200 cycles at 0.2 C. This strategy highlights a new perspective for achieving high-energy-density Li-S batteries.

3.
Proc Natl Acad Sci U S A ; 121(14): e2400868121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547066

RESUMO

Partial cystectomy procedures for urinary bladder-related dysfunction involve long recovery periods, during which urodynamic studies (UDS) intermittently assess lower urinary tract function. However, UDS are not patient-friendly, they exhibit user-to-user variability, and they amount to snapshots in time, limiting the ability to collect continuous, longitudinal data. These procedures also pose the risk of catheter-associated urinary tract infections, which can progress to ascending pyelonephritis due to prolonged lower tract manipulation in high-risk patients. Here, we introduce a fully bladder-implantable platform that allows for continuous, real-time measurements of changes in mechanical strain associated with bladder filling and emptying via wireless telemetry, including a wireless bioresorbable strain gauge validated in a benchtop partial cystectomy model. We demonstrate that this system can reproducibly measure real-time changes in a rodent model up to 30 d postimplantation with minimal foreign body response. Studies in a nonhuman primate partial cystectomy model demonstrate concordance of pressure measurements up to 8 wk compared with traditional UDS. These results suggest that our system can be used as a suitable alternative to UDS for long-term postoperative bladder recovery monitoring.


Assuntos
Bexiga Urinária , Infecções Urinárias , Animais , Humanos , Bexiga Urinária/cirurgia , Urodinâmica/fisiologia , Próteses e Implantes , Cistectomia
4.
Harmful Algae ; 131: 102559, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38212088

RESUMO

To understand environmental effects affecting paralytic shellfish toxin production of Centrodinium punctatum, this study examined the growth responses, and toxin contents and profiles of a C. punctatum culture exposed to drastic changes of temperature (5-30 °C) and salinity (15-40). C. punctatum grew over a temperature range of 15-25 °C, with an optimum of 20 °C., and over a salinity range of 25-40, with optimum salinities of 30-35. This suggests that C. punctatum prefers relatively warm waters and an oceanic habitat for its growth and can adapt to significant changes of salinity levels. When C. punctatum was cultivated at different temperature and salinity levels, the PST profile included four major analogs (STX, neoSTX, GTX1 and GTX4, constituted >80 % of the profile), while low amounts of doSTX and traces of dc-STX and dc-GTX2 were also observed. Interestingly, though overall toxin contents did not change significantly with temperature, increases in the proportion of STX, and decreases in proportions in GTX1 and GTX4 were observed with higher temperatures. Salinity did not affect either toxin contents or profile from 25 to 35. However, the total toxin content dropped to approximately half at salinity 40, suggesting this salinity may induce metabolic changes in C. punctatum.


Assuntos
Dinoflagellida , Toxinas Biológicas , Temperatura , Salinidade , Oceanos e Mares
5.
Adv Mater ; 36(11): e2311105, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38085968

RESUMO

Developing commercially viable electrocatalyst lies at the research hotspot of rechargeable Zn-air batteries, but it is still challenging to meet the requirements of energy efficiency and durability in realistic applications. Strategic material design is critical to addressing its drawbacks in terms of sluggish kinetics of oxygen reactions and limited battery lifespan. Herein, a "raisin-bread" architecture is designed for a hybrid catalyst constituting cobalt nitride as the core nanoparticle with thin oxidized coverings, which is further deposited within porous carbon aerogel. Based on synchrotron-based characterizations, this hybrid provides oxygen vacancies and Co-Nx -C sites as the active sites, resulting from a strong coupling between CoOx Ny nanoparticles and 3D conductive carbon scaffolds. Compared to the oxide reference, it performs enhanced stability in harsh electrocatalytic environments, highlighting the benefits of the oxynitride. Furthermore, the 3D conductive scaffolds improve charge/mass transportation and boost durability of these active sites. Density functional theory calculations reveal that the introduced N species into hybrid can synergistically tune the d-band center of cobalt and improve its bifunctional activity. As a result, the obtained air cathode exhibits bifunctional overpotential of 0.65 V and a battery lifetime exceeding 1350 h, which sets a new record for rechargeable Zn-air battery reported so far.

6.
ACS Nano ; 17(23): 23649-23658, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039345

RESUMO

The high explosiveness of hydrogen gas in the air necessitates prompt detection in settings where hydrogen is used. For this reason, hydrogen sensors are required to offer rapid detection and possess superior sensing characteristics in terms of measurement range, linearity, selectivity, lifetime, and environment insensitivity according to the publicized protocol. However, previous approaches have only partially achieved the standardized requirements and have been limited in their capability to develop reliable materials for spatially accessible systems. Here, an electrical hydrogen sensor with an ultrafast response (∼0.6 s) satisfying all demands for hydrogen detection is demonstrated. Tailoring structural engineering based on the reaction kinetics of hydrogen and palladium, an optimized heating architecture that thermally activates fully suspended palladium (Pd) nanowires at a uniform temperature is designed. The developed Pd nanostructure, at a designated temperature distribution, rapidly reacts with hydrogen, enabling a hysteresis-free response from 0.1% to 10% and durable characteristics in mechanical shock and repetitive operation (>10,000 cycles). Moreover, the device selectively detects hydrogen without performance degradation in humid or carbon-based interfering gas circumstances. Finally, to verify spatial accessibility, the wireless hydrogen detection system has been demonstrated, detecting and reporting hydrogen leakage in real-time within just 1 s.

7.
Micromachines (Basel) ; 14(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38138339

RESUMO

The fabrication of microlens arrays (MLAs) using diffuser-assisted photolithography (DPL) has garnered substantial recent interest owing to the exceptional capabilities of DPL in adjusting the size and shape, achieving high fill factors, enhancing productivity, and ensuring excellent reproducibility. The inherent unpredictability of light interactions within the diffuser poses challenges in accurately forecasting the final shape and dimensions of microlenses in the DPL process. Herein, we introduce a comprehensive theoretical model to forecast microlens shapes in response to varying exposure doses within a DPL framework. We establish a robust MLA fabrication method aligned with conventional DPL techniques to enable precise shape modulation. By calibrating the exposure doses meticulously, we generate diverse MLA configurations, each with a distinct shape and size. Subsequently, by utilizing the experimentally acquired data encompassing parameters such as height, radius of curvature, and angles, we develop highly precise theoretical prediction models, achieving R-squared values exceeding 95%. The subsequent validation of our model encompasses the accurate prediction of microlens shapes under specific exposure doses. The verification results exhibit average error rates of approximately 2.328%, 7.45%, and 3.16% for the height, radius of curvature, and contact angle models, respectively, all of which were well below the 10% threshold.

8.
Mar Pollut Bull ; 191: 114995, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37146546

RESUMO

To better understand the role of resting cysts in the outbreak of paralytic shellfish poisoning and bloom dynamics in Jinhae-Masan Bay, Korea, this study investigated the germination features of ellipsoidal Alexandrium cysts isolated from sediments collected in winter and summer under different combinations of temperature and salinity. Morphology and phylogeny of germling cells revealed that the ellipsoidal Alexandrium cysts belong to Alexandrium catenella (Group I). The cysts could germinate across a wide range of temperature (5-25 °C) with germination success within 5 days, indicating that continuous seeding for the maintenance of vegetative cells in the water column may occur through the year without an endogenous clock to regulate germination timing. In addition, the cyst germination of A. catenella (Group I) was not controlled by seasonal salinity changes. Based on the results, this study provides a schematic scenario of the bloom development of A. catenella (Group I) in Jinhae-Masan Bay, Korea.


Assuntos
Cistos , Dinoflagellida , Intoxicação por Frutos do Mar , Humanos , Dinoflagellida/fisiologia , Temperatura , Baías , Salinidade , República da Coreia
9.
Adv Mater ; 35(4): e2203285, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35679126

RESUMO

Au and Pt are well-known catalysts for electrocatalytic oxidation of biomass-derived glycerol. Although some nonprecious-metal-based materials to replace the costly Au and Pt are used for this reaction, the fundamental question of how the nonprecious catalysts affect the reaction chemistry and mechanism compared to Au and Pt catalysts is still unanswered. In this work, both experimental and computational methods are used to understand how and why the reaction performance and chemistry for the electrocatalytic glycerol oxidation reaction (EGOR) change with electrochemically-synthesized CuCo-oxide, Cu-oxide, and Co-oxide catalysts compared to conventional Au and Pt catalysts. The Au and Pt catalysts generate major glyceric acid and glycolic acid products from the EGOR. Interestingly, the prepared Cu-based oxides produce glycolic acid and formic acid with high selectivity of about 90.0%. This different reaction chemistry is related to the enhanced ability of CC bond cleavage on the Cu-based oxide materials. The density functional theory calculations demonstrate that the formic acids are mainly formed on the Cu-based oxide surfaces rather than in the process of glycolic acid formation in the free energy diagram. This study provides critical scientific insights into developing future nonprecious-based materials for electrochemical biomass conversions.

10.
Membranes (Basel) ; 12(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36557194

RESUMO

Engineering thermoplastics, such as poly(arylene ether sulfone), are more often synthesized using F-containing monomers rather than Cl-containing monomers because the F atom is considered more electronegative than Cl, leading to a better condensation polymerization reaction. In this study, the reaction's spontaneity improved when Cl atoms were used compared to the case using F atoms. Specifically, sulfonated poly(arylene ether sulfone) was synthesized by reacting 4,4'-dihydroxybiphenyl with two types of biphenyl sulfone monomers containing Cl and F atoms. No significant difference was observed in the structural, elemental, and chemical properties of the two copolymers based on nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, transmission electron microscopy, and electrochemical impedance spectroscopy. However, the solution viscosity and mechanical strength of the copolymer synthesized with the Cl-terminal monomers were slightly higher than those of the copolymer synthesized with the F-terminal monomers due to higher reaction spontaneity. The first-principle study was employed to elucidate the underlying mechanisms of these reactions.

11.
Biosensors (Basel) ; 12(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36354461

RESUMO

The interest in biodegradable pressure sensors in the biomedical field is growing because of their temporary existence in wearable and implantable applications without any biocompatibility issues. In contrast to the limited sensing performance and biocompatibility of initially developed biodegradable pressure sensors, device performances and functionalities have drastically improved owing to the recent developments in micro-/nano-technologies including device structures and materials. Thus, there is greater possibility of their use in diagnosis and healthcare applications. This review article summarizes the recent advances in micro-/nano-structured biodegradable pressure sensor devices. In particular, we focus on the considerable improvement in performance and functionality at the device-level that has been achieved by adapting the geometrical design parameters in the micro- and nano-meter range. First, the material choices and sensing mechanisms available for fabricating micro-/nano-structured biodegradable pressure sensor devices are discussed. Then, this is followed by a historical development in the biodegradable pressure sensors. In particular, we highlight not only the fabrication methods and performances of the sensor device, but also their biocompatibility. Finally, we intoduce the recent examples of the micro/nano-structured biodegradable pressure sensor for biomedical applications.


Assuntos
Técnicas Biossensoriais , Próteses e Implantes
12.
Nat Commun ; 13(1): 6518, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316354

RESUMO

Physically transient forms of electronics enable unique classes of technologies, ranging from biomedical implants that disappear through processes of bioresorption after serving a clinical need to internet-of-things devices that harmlessly dissolve into the environment following a relevant period of use. Here, we develop a sustainable manufacturing pathway, based on ultrafast pulsed laser ablation, that can support high-volume, cost-effective manipulation of a diverse collection of organic and inorganic materials, each designed to degrade by hydrolysis or enzymatic activity, into patterned, multi-layered architectures with high resolution and accurate overlay registration. The technology can operate in patterning, thinning and/or cutting modes with (ultra)thin eco/bioresorbable materials of different types of semiconductors, dielectrics, and conductors on flexible substrates. Component-level demonstrations span passive and active devices, including diodes and field-effect transistors. Patterning these devices into interconnected layouts yields functional systems, as illustrated in examples that range from wireless implants as monitors of neural and cardiac activity, to thermal probes of microvascular flow, and multi-electrode arrays for biopotential sensing. These advances create important processing options for eco/bioresorbable materials and associated electronic systems, with immediate applicability across nearly all types of bioelectronic studies.


Assuntos
Implantes Absorvíveis , Eletrônica , Semicondutores , Eletrodos , Lasers
13.
Nanomaterials (Basel) ; 12(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296796

RESUMO

An alternative electrosynthesis of PdTe, using the electrochemical atomic layer deposition (E-ALD) method, is reported. The cyclic voltammetry technique was used to analyze Au substrate in copper (Cu2+), and a tellurous (Te4+) solution was used to identify UPDs and set the E-ALD cycle program. Results obtained using atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques reveal the nanometer-sized flat morphology of the systems, indicating the epitaxial characteristics of Pd and PdTe nanofilms. The effect of the Pd:Te ratio on the crystalline structure, electronic properties, and magnetic properties was investigated using a combination of density functional theory (DFT) and X-ray diffraction techniques. Te-containing electrocatalysts showed improved peak current response and negative onset potential toward ethanol oxidation (5 mA; -0.49 V) than Pd (2.0 mA; -0.3 V). Moreover, DFT ab initio calculation results obtained when the effect of Te content on oxygen adsorption was studied revealed that the d-band center shifted relative to the Fermi level: -1.83 eV, -1.98 eV, and -2.14 eV for Pd, Pd3Te, and Pd3Te2, respectively. The results signify the weakening of the CO-like species and the improvement in the PdTe catalytic activity. Thus, the electronic and geometric effects are the descriptors of Pd3Te2 activity. The results suggest that Pd2Te2 is a potential candidate electrocatalyst that can be used for the fabrication of ethanol fuel cells.

14.
Science ; 377(6601): 109-115, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35771907

RESUMO

Implantable devices capable of targeted and reversible blocking of peripheral nerve activity may provide alternatives to opioids for treating pain. Local cooling represents an attractive means for on-demand elimination of pain signals, but traditional technologies are limited by rigid, bulky form factors; imprecise cooling; and requirements for extraction surgeries. Here, we introduce soft, bioresorbable, microfluidic devices that enable delivery of focused, minimally invasive cooling power at arbitrary depths in living tissues with real-time temperature feedback control. Construction with water-soluble, biocompatible materials leads to dissolution and bioresorption as a mechanism to eliminate unnecessary device load and risk to the patient without additional surgeries. Multiweek in vivo trials demonstrate the ability to rapidly and precisely cool peripheral nerves to provide local, on-demand analgesia in rat models for neuropathic pain.


Assuntos
Implantes Absorvíveis , Bloqueio Nervoso , Neuralgia , Manejo da Dor , Nervos Periféricos , Animais , Materiais Biocompatíveis , Bloqueio Nervoso/instrumentação , Neuralgia/terapia , Manejo da Dor/instrumentação , Nervos Periféricos/fisiopatologia , Ratos
15.
ACS Nano ; 16(8): 11957-11967, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35621510

RESUMO

Palladium (Pd) has been drawing increasing attention as a hydrogen (H2) detecting material due to its highly selective sensitivity to H2. However, at H2 concentrations above 2%, Pd undergoes an inevitable phase transition, causing undesirable electrical and mechanical alterations. In particular, nonlinear gas response (ΔR/R0) that accompanies phase transition has been a great bottleneck for detecting H2 in high concentrations, which is especially important as there is a risk of explosion over 4% H2. Here, we propose a phase-transition-inhibited Pd nanowire H2 sensor that can detect up to 4% H2 with high linearity and high sensitivity. Based on the calculation of the change in free energy, we designed Pd nanowires that are highly adhered to the substrate to withstand the stress that leads to phase transition. We theoretically optimized the Pd nanowire dimensions using a finite element method simulation and then experimentally fabricated the proposed sensor by exploiting a developed nanofabrication method. The proposed sensor exhibits a high sensing linearity (98.9%) with high and stable sensitivity (ΔR/R0/[H2] = 875%·bar-1) over a full range of H2 concentrations (0.1-4%). Using the fabricated Pd sensors, we have successfully demonstrated a wireless sensor module that can detect H2 with high linearity, notifying real-time H2 leakage through remote communication. Overall, our work suggests a nanostructuring strategy for detecting H2 with a phase-transition-inhibited pure Pd H2 sensor with rigorous scientific exploration.

16.
Sci Rep ; 12(1): 2284, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145152

RESUMO

Recently, copper oxide (CuO) has drawn much attention as a promising material in visible light photodetection with its advantages in ease of nanofabrication. CuO allows a variety of nanostructures to be explored to enhance the optoelectrical performance such as photogenerated carriers scattering and bandgap engineering. However, previous researches neglect in-depth analysis of CuO's light interaction effects, restrictively using random orientation such as randomly arranged nanowires, single nanowires, and dispersed nanoparticles. Here, we demonstrate an ultra-high performance CuO visible light photodetector utilizing perfectly-aligned nanowire array structures. CuO nanowires with 300 nm-width critical dimension suppressed carrier transport in the dark state and enhanced the conversion of photons to carriers; additionally, the aligned arrangement of the nanowires with designed geometry improved the light absorption by means of the constructive interference effect. The proposed nanostructures provide advantages in terms of dark current, photocurrent, and response time, showing unprecedentedly high (state-of-the-art) optoelectronic performance, including high values of sensitivity (S = 172.21%), photo-responsivity (R = 16.03 A/W, λ = 535 nm), photo-detectivity (D* = 7.78 × 1011 Jones), rise/decay time (τr/τd = 0.31 s/1.21 s).

17.
Nano Lett ; 22(3): 1350-1357, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35051336

RESUMO

Zinc metal anodes show great promise for cheap and safe energy storage devices. However, it remains challenging to regulate highly efficient Zn plating/stripping under a high depth of discharge (DOD). Guided by density functional theory calculation, we here synthesized an oxygen- and nitrogen-codoped carbon superstructure as an efficient host for high-DOD Zn metal anodes through rational monomer selection, polymer self-assembly, and structure-preserved carbonization. With microscale 3D hierarchical structures, microcrystalline graphitic layers, and zincophilic heteroatom dopants, a flower-shaped carbon (Cflower) host could guide Zn nucleation and growth in a heteroepitaxial mode, affording horizontal plating with a high Coulombic efficiency (CE) and long life. As a demonstration, the Cflower-hosted Zn anode was paired with both battery and supercapacitor cathodes and delivered large capacity/capacitance, fast rates, long life, and ca. 100% CE even under a high DOD, outclassing hostless Zn-based devices. As they possess cheap, scalable, and efficient features, Cflower hosts hold the potential for practical zinc-metal-based energy devices.


Assuntos
Carbono , Grafite , Fontes de Energia Elétrica , Eletrodos , Zinco
18.
Harmful Algae ; 110: 102122, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887002

RESUMO

To better understand the outbreaks of paralytic shellfish poisoning and bloom dynamics caused by Alexandrium species in Jinhae-Masan Bay, Korea, the germination and distributions of ellipsoidal Alexandrium cysts were investigated, and paralytic shellfish toxins (PSTs) profiles and contents were determined using strains established from germling cells. The phylogeny and morphological observations revealed that the germinated vegetative cells from ellipsoidal cysts collected from the surface sediments in Jinhae-Masan Bay belong to Alexandrium catenella (Group I) and A. pacificum (Group IV) nested within A. tamarense species complex. Cyst germinations of A. catenella (Group I) were observed at only 10 °C, whereas cysts of A. pacificum (Group IV) could germinate at temperature ranges of 10 to 25 °C. Maximum germination success (85%) for isolated cysts occurred at 15 °C, and the germling cells were A. pacificum (Group IV). The results indicate that the variation in water temperature in Jinhae-Masan Bay can control the seasonal variations in germination of cysts of A. catenella (Group I) and A. pacificum (Group IV). The germination rates of ellipsoidal Alexandrium cysts were different among sampling sites in Jinhae-Masan Bay, probably because of differences in distribution and abundance of A. catenella (Group I) and A. pacificum (Group IV) in the sediments. The ellipsoidal Alexandrium cyst concentrations were much higher in February than in August, however the distributions were similar. Gonyautoxins 3 and 4 (GTX-3 and GTX-4) contributed a large proportion (>90%) of the toxins produced by strains A. catenella (Group I) and A. pacificum (Group IV) established from germling cells, and the total cellular contents were higher in A. catenella (Group I) than in A. pacificum (Group IV).


Assuntos
Cistos , Dinoflagellida , Intoxicação por Frutos do Mar , Baías , Germinação
19.
Nat Mater ; 20(11): 1559-1570, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34326506

RESUMO

Flexible electronic/optoelectronic systems that can intimately integrate onto the surfaces of vital organ systems have the potential to offer revolutionary diagnostic and therapeutic capabilities relevant to a wide spectrum of diseases and disorders. The critical interfaces between such technologies and living tissues must provide soft mechanical coupling and efficient optical/electrical/chemical exchange. Here, we introduce a functional adhesive bioelectronic-tissue interface material, in the forms of mechanically compliant, electrically conductive, and optically transparent encapsulating coatings, interfacial layers or supporting matrices. These materials strongly bond both to the surfaces of the devices and to those of different internal organs, with stable adhesion for several days to months, in chemistries that can be tailored to bioresorb at controlled rates. Experimental demonstrations in live animal models include device applications that range from battery-free optoelectronic systems for deep-brain optogenetics and subdermal phototherapy to wireless millimetre-scale pacemakers and flexible multielectrode epicardial arrays. These advances have immediate applicability across nearly all types of bioelectronic/optoelectronic system currently used in animal model studies, and they also have the potential for future treatment of life-threatening diseases and disorders in humans.


Assuntos
Implantes Absorvíveis , Adesivos , Animais , Condutividade Elétrica , Eletrônica
20.
ACS Appl Mater Interfaces ; 13(24): 28036-28048, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34114452

RESUMO

Sulfur is a prospective material for next-generation batteries with high theoretical capacity, but its drawbacks hinder its commercialization. To overcome the low conductivity of natural sulfur and the shuttle effect of lithium polysulfide, the study proposes a novel sulfur film coated with three-dimensional nitrogen and cobalt-codoped polyhedral carbon wrapped on a multiwalled carbon nanotube sponge (3D-S@NCoCPC sponge) composite as a high-performance cathode material for rechargeable lithium-sulfur batteries. The interconnected conductive carbon network with abundant pores provides more room for the homogeneous distribution of sulfur within the composite and creates a favorable pathway for electrolyte permeability and lithium-ion diffusion. Moreover, the strong interaction between cobalt and lithium polysulfides leads to efficient suppression of the shuttle effect. In addition, the homogeneous distribution of sulfur and cobalt within the composite enhances electronic transfer for the conversion reaction of sulfur. As expected, the cathode with a high sulfur content of 77.5 wt % in the composite achieved a high initial discharge capacity of 1192 mA h g-1 and high Coulombic efficiency of 99.98% after 100 cycles at 100 mA g-1 current density. Stable performance was achieved with 92.9% capacity retention after 200 cycles at 1000 mA/g current density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...