Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(21): 14110-14118, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37179991

RESUMO

Different concentrations of titanium oxide nanoparticles (TiO2NPs) have been frequently reported in treated wastewater used for the irrigation of crops. Luteolin is a susceptive anticancer flavonoid in many crops and rare medicinal plants that can be affected by exposure to TiO2NPs. This study investigates the potential transformation of pure luteolin in exposure to TiO2NP-containing water. In an in vitro system, three replicates of 5 mg L-1 of pure luteolin were exposed to TiO2NPs (0, 25, 50, 100 ppm). After 48 h exposure, the samples were extensively analyzed by Raman spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, and dynamic light scattering (DLS). A positive correlation was found between TiO2NPs concentrations and the structural alteration of luteolin content, where over 20% of luteolin structure was allegedly altered in the presence of 100 ppm TiO2NPs. The increase of NPs diameter (∼70 nm) and dominant peaks in Raman spectra revealed that luteolin was adsorbed onto the TiO2NPs surface. Further, the second-order derivative analysis confirmed the transformation of luteolin upon exposure to TiO2NPs. This study provides fundamental insight into agricultural safety measures when exposed to air or water-borne TiO2NPs.

2.
J Biomol Struct Dyn ; 37(2): 307-320, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29322868

RESUMO

Organophosphate compounds (OPC) have become the primary choice as insecticides and are widely used across the world. Additionally, OPCs were also commonly used as a chemical warfare agent that triggers a great challenge to public safety. Exposure of OPCs to human causes immediate excitation of cholinergic neurotransmission through transient elevation of synaptic acetylcholine (ACh) levels and accumulations. Likewise, prolonged exposure of OPCs can affect the processes in immune response, carbohydrate metabolism, cardiovascular toxicity, and several others. Studies revealed that the toxicity of OPCs was provoked by inhibition of acetylcholinesterase (AChE). Therefore, combined in silico approaches - pharmacophore-based 3D-QSAR model; docking and Molecular Dynamics (MD) - were used to assess the precise and comprehensive effects of series of known OP-derived compounds together with its -log LD50 values. The selected five-featured pharmacophore model - AAHHR.61 - displayed the highest correlation (R2 = .9166), cross-validated coefficient (Q2 = .8221), F = 63.2, Pearson-R = .9615 with low RMSE = .2621 values obtained using five component PLS factors. Subsequently, the well-validated model was then used as a 3D query to search novel OPCs using a high-throughput virtual screening technique. Simultaneously, the docking studies predicted the binding pose of the most active OPC in the MdAChE binding pocket. Additionally, the stability of docking was verified using MD simulation. The results revealed that OP22 and predicted lead compounds bound tightly to S315 of MdAChE through potential hydrogen bond interaction over time. Overall, this study might provide valuable insight into binding mode of OPCs and hit compounds to inhibit AChE in housefly.


Assuntos
Acetilcolinesterase/química , Inibidores da Colinesterase/química , Moscas Domésticas/enzimologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Organofosfatos/química , Animais , Sítios de Ligação , Inibidores da Colinesterase/farmacologia , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Molecular , Organofosfatos/farmacologia , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
3.
Anal Lett ; 48(15): 2482-2492, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27239059

RESUMO

The objective of this work was the development of reliable methods to determine 2,4-dinitrotoluene, a precursor to explosives. A complex between Fe(II) ion and 2,4-dinitrotoluene was formed in solution and characterized by ultraviolet-visible absorption spectroscopy using Job's plots and attenuated total reflection-Fourier transform infrared spectroscopy. Surface modification of glassy carbon electrodes were performed with iron nanoparticles via electrochemical reduction of iron(II). The modified electrode was employed for the determination of 2,4-dinitrotoluene. Scanning electron micrographs showed that the iron nanoparticles were incorporated on the surface of glassy carbon electrode. The electrochemical determination of 2,4-dinitrotoluene was performed by cyclic voltammetry using the modified electrode. The iron modified electrode produced larger reduction currents than the unmodified electrode for the same concentration of 2,4-dinitrotoluene. Concentrations of 2,4-dinitrotoluene as low as 10 parts per billion were determined using the modified electrode.

4.
Anal Sci ; 30(5): 581-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24813957

RESUMO

We have developed an optical chemical sensor for the detection of organophosphate (OP) compounds using a polymerized crystalline colloidal array (PCCA) thin film composed of a close-packed colloidal array of polystyrene particles. The PCCA thin film was modified with ß-cyclodextrin (ß-CD) polymer as a capping cavity for the selective detection of paraoxon-ethyl and parathion-ethyl chemical agents. The fabrication of the modified PCCA thin film was optimized and the structure was characterized using scanning electron microscopy (SEM). The arrangement of polystyrene particles in the PCCA follows a pattern of the fcc (111) planes with strong diffraction peak in the visible spectral region and pH dependence. The diffraction peak of the ß-CD modified PCCA thin film showed a red shift according to the change of paraoxon-ethyl and parathion-ethyl concentrations at a fast response time (10 s) and high sensitivity with detection limits of 2.0 and 3.4 ppb, respectively. Furthermore, the proposed interaction mechanism of ß-CD with paraoxon-ethyl and parathion-ethyl in the ß-CD modified PCCA thin film were discussed.


Assuntos
Paraoxon/análogos & derivados , Paration/análise , Polímeros/química , beta-Ciclodextrinas/química , Acrilamida/química , Soluções Tampão , Coloides/química , Cristalização , Concentração de Íons de Hidrogênio , Limite de Detecção , Microscopia Eletrônica de Varredura , Paraoxon/análise , Poliestirenos/química , Propriedades de Superfície
5.
J Breast Cancer ; 17(1): 18-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24744793

RESUMO

PURPOSE: Photodynamic therapy (PDT) is gaining increasing recognition for breast cancer treatment because it offers local selectivity and reduced toxic side effects compared to radiotherapy and chemotherapy. In PDT, photosensitizer drugs are loaded in different nanomaterials and used in combination with light exposure. However, the most representative issue with PDT is the difficulty of nanomaterials to encapsulate anticancer drugs at high doses, which results in low efficacy of the PDT treatment. Here, we proposed the development of the poly(N-isopropylacrylamide) (PNIPAM) microgel for the encapsulation of methylene blue, an anticancer drug, for its use as breast cancer treatment in MCF-7 cell line. METHODS: We developed biocompatible microgels based on nonfunctionalized PNIPAM and its corresponding anionically functionalized PNIPAM and polyacrylic acid (PNIPAM-co-PAA) microgel. Methylene blue was used as the photosensitizer drug because of its ability to generate toxic reactive oxygen species upon exposure to light at 664 nm. Core PNIPAM and core/shell PNIPAM-co-PAA microgels were synthesized and characterized using ultraviolet-visible spectroscopy and dynamic light scattering. The effect of methylene blue was evaluated using the MCF-7 cell line. RESULTS: Loading of methylene blue in core PNIPAM microgel was higher than that in the core/shell PNIPAM-co-PAA microgel, indicating that electrostatic interactions did not play an important role in loading a cationic drug. This behavior is probably due to the skin layer inhibiting the high uptake of drugs in the PNIPAM-co-PAA microgel. Core PNIPAM microgel effectively retained the cationic drug (i.e., methylene blue) for several hours compared to core/shell PNIPAM-co-PAA and enhanced its photodynamic efficacy in vitro more than that of free methylene blue. CONCLUSION: Our results showed that the employment of core PNIPAM and core/shell PNIPAM-co-PAA microgels enhanced the encapsulation of methylene blue. Core PNIPAM microgel released the drug more slowly than did core/shell PNIPAM-co-PAA, and it effectively inhibited the growth of MCF-7 cells.

6.
Ionics (Kiel) ; 15(4): 459-464, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20361009

RESUMO

This paper reports the preparation of PS-PEI-Au composite colloids via the utilization of a facile method involving poly(ethylenimine) (PEI). The PEI used in the reaction scheme served the role of a linker between Au and PS and additionally as a reducing agent in the conversion of Au ions to Au NPs. The PS-PEI-Au colloids thus prepared were characterized by scanning electron microscopy, UV-Vis and IR spectroscopy and cyclic voltammetry. The PS-PEI-Au composites were further used for the detection of the thiol-containing amino acids, cysteine and homocysteine, via Attenuated Total Reflection (ATR) spectroscopy. Experimental results revealed interfacial binding of the amino acids to the composites, and correlated with successive additions of the respective amino acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...