Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(8): e2206674, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596675

RESUMO

Deep generative models are attracting attention as a smart molecular design strategy. However, previous models often render molecules with low synthesizability, hindering their real-world applications. Here, a novel graph-based conditional generative model which makes molecules by tailoring retrosynthetically prepared chemical building blocks until achieving target properties in an auto-regressive fashion is proposed. This strategy improves the synthesizability and property control of the resulting molecules and also helps learn how to select appropriate building blocks and bind them together to achieve target properties. By applying a negative sampling method to the selection process of building blocks, this model overcame a critical limitation of previous fragment-based models, which can only use molecules from the training set during generation. As a result, the model works equally well with unseen building blocks without sacrificing computational efficiency. It is demonstrated that the model can generate potential inhibitors with high docking scores against the 3CL protease of SARS-COV-2.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Endopeptidases , Modelos Moleculares
2.
Chem Sci ; 13(2): 554-565, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35126987

RESUMO

Drug-likeness prediction is important for the virtual screening of drug candidates. It is challenging because the drug-likeness is presumably associated with the whole set of necessary properties to pass through clinical trials, and thus no definite data for regression is available. Recently, binary classification models based on graph neural networks have been proposed but with strong dependency of their performances on the choice of the negative set for training. Here we propose a novel unsupervised learning model that requires only known drugs for training. We adopted a language model based on a recurrent neural network for unsupervised learning. It showed relatively consistent performance across different datasets, unlike such classification models. In addition, the unsupervised learning model provides drug-likeness scores that well separate distributions with increasing mean values in the order of datasets composed of molecules at a later step in a drug development process, whereas the classification model predicted a polarized distribution with two extreme values for all datasets presumably due to the overconfident prediction for unseen data. Thus, this new concept offers a pragmatic tool for drug-likeness scoring and further can be applied to other biochemical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...