Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 49(9): 5964-5980, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35678739

RESUMO

BACKGROUND: Acceleration of MR imaging (MRI) is a popular research area, and usage of deep learning for acceleration has become highly widespread in the MR community. Joint acceleration of multiple-acquisition MRI was proven to be effective over a single-acquisition approach. Also, optimization in the sampling pattern demonstrated its advantage over conventional undersampling pattern. However, optimizing the sampling patterns for joint acceleration of multiple-acquisition MRI has not been investigated well. PURPOSE: To develop a model-based deep learning scheme to optimize sampling patterns for a joint acceleration of multi-contrast MRI. METHODS: The proposed scheme combines sampling pattern optimization and multi-contrast MRI reconstruction. It was extended from the physics-guided method of the joint model-based deep learning (J-MoDL) scheme to optimize the separate sampling pattern for each of multiple contrasts simultaneously for their joint reconstruction. Tests were performed with three contrasts of T2-weighted, FLAIR, and T1-weighted images. The proposed multi-contrast method was compared to (i) single-contrast method with sampling optimization (baseline J-MoDL), (ii) multi-contrast method without sampling optimization, and (iii) multi-contrast method with single common sampling optimization for all contrasts. The optimized sampling patterns were analyzed for sampling location overlap across contrasts. The scheme was also tested in a data-driven scenario, where the inversion between input and label was learned from the under-sampled data directly and tested on knee datasets for generalization test. RESULTS: The proposed scheme demonstrated a quantitative and qualitative advantage over the single-contrast scheme with sampling pattern optimization and the multi-contrast scheme without sampling pattern optimization. Optimizing the separate sampling pattern for each of the multi-contrasts was superior to optimizing only one common sampling pattern for all contrasts. The proposed scheme showed less overlap in sampling locations than the single-contrast scheme. The main hypothesis was also held in the data-driven situation as well. The brain-trained model worked well on the knee images, demonstrating its generalizability. CONCLUSION: Our study introduced an effective scheme that combines the sampling optimization and the multi-contrast acceleration. The seamless combination resulted in superior performance over the other existing methods.


Assuntos
Aprendizado Profundo , Aceleração , Encéfalo , Processamento de Imagem Assistida por Computador/métodos , Articulação do Joelho , Imageamento por Ressonância Magnética/métodos
2.
NMR Biomed ; 35(4): e4572, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34114253

RESUMO

In this study, we propose a new sampling strategy for efficiently accelerating multiple acquisition MRI. The new sampling strategy is to obtain data along different phase-encoding directions across multiple acquisitions. The proposed sampling strategy was evaluated in multicontrast MR imaging (T1, T2, proton density) and multiple phase-cycled (PC) balanced steady-state free precession (bSSFP) imaging by using convolutional neural networks with central and random sampling patterns. In vivo MRI acquisitions as well as a public database were used to test the concept. Based on both visual inspection and quantitative analysis, the proposed sampling strategy showed better performance than sampling along the same phase-encoding direction in both multicontrast MR imaging and multiple PC-bSSFP imaging, regardless of sampling pattern (central, random) or datasets (public, retrospective and prospective in vivo). For the prospective in vivo applications, acceleration was performed by sampling along different phase-encoding directions at the time of acquisition with a conventional rectangular field of view, which demonstrated the advantage of the proposed sampling strategy in the real environment. Preliminary trials on compressed sensing (CS) also demonstrated improvement of CS with the proposed idea. Sampling along different phase-encoding directions across multiple acquisitions is advantageous for accelerating multiacquisition MRI, irrespective of sampling pattern or datasets, with further improvement through transfer learning.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Estudos Prospectivos , Estudos Retrospectivos
3.
Med Phys ; 47(3): 983-997, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31889314

RESUMO

PURPOSE: Magnetic resonance (MR) imaging with a long scan time can lead to degraded images due to patient motion, patient discomfort, and increased costs. For these reasons, the role of rapid MR imaging is important. In this study, we propose the joint reconstruction of multicontrast brain MR images from down-sampled data to accelerate the data acquisition process using a novel deep-learning network. METHODS: Twenty-one healthy volunteers (female/male = 7/14, age = 26 ± 4 yr, range 22-35 yr) and 16 postoperative patients (female/male = 7/9, age = 49 ± 9 yr, range 37-62 yr) were scanned on a 3T whole-body scanner for prospective and retrospective studies, respectively, using both T1-weighted spin-echo (SE) and T2-weighted fast spin-echo (FSE) sequences. We proposed a network which we term "X-net" to reconstruct both T1- and T2-weighted images from down-sampled images as well as a network termed "Y-net" which reconstructs T2-weighted images from highly down-sampled T2-weighted images and fully sampled T1-weighted images. Both X-net and Y-net are composed of two concatenated subnetworks. We investigate optimal sampling patterns, the optimal patch size for augmentation, and the optimal acceleration factors for network training. An additional Y-net combined with a generative adversarial network (GAN) was also implemented and tested to investigate the effects of the GAN on the Y-net performance. Single- and joint-reconstruction parallel-imaging and compressed-sensing algorithms along with a conventional U-net were also tested and compared with the proposed networks. For this comparison, the structural similarity (SSIM), normalized mean square error (NMSE), and Fréchet inception distance (FID) were calculated between the outputs of the networks and fully sampled images. The statistical significance of the performance was evaluated by assessing the interclass correlation and in paired t-tests. RESULTS: The outputs from the two concatenated subnetworks were closer to the fully sampled images compared to those from one subnetwork, with this result showing statistical significance. Uniform down-sampling led to a statically significant improvement in the image quality compared to random or central down-sampling patterns. In addition, the proposed networks provided higher SSIM and NMSE values than U-net, compressed-sensing, and parallel-imaging algorithms, all at statistically significant levels. The GAN-based Y-net showed a better FID and more realistic images compared to a non-GAN-based Y-net. The performance capabilities of the networks were similar between normal subjects and patients. CONCLUSIONS: The proposed X-net and Y-net effectively reconstructed full images from down-sampled images, outperforming the conventional parallel-imaging, compressed-sensing and U-net methods and providing more realistic images in combination with a GAN. The developed networks potentially enable us to accelerate multicontrast anatomical MR imaging in routine clinical studies including T1-and T2-weighted imaging.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Humanos
4.
Magn Reson Med ; 84(1): 263-276, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31825115

RESUMO

PURPOSE: To develop new artificial neural networks (ANNs) to accelerate slice encoding for metal artifact correction (SEMAC) MRI. METHODS: Eight titanium phantoms and 77 patients after brain tumor surgery involving metallic neuro-plating instruments were scanned using SEMAC at a 3T Skyra scanner. For the phantoms, proton-density, T1-, and T2-weighted images were acquired for developing both multilayer perceptron (MLP) and convolutional neural network (CNN). For the patients, T2-weighted images were acquired for developing CNN. All networks were trained with the SEMAC factor 4 or 6 as input and the factor 12 as label, yielding an acceleration factor of 3 or 2. Performance of the CNN model was compared against parallel imaging and compressed sensing on the phantom datasets. Two extra T1-weighted in vivo sets were acquired to investigate generalizability of the models to different contrasts. RESULTS: Both multilayer perceptron and CNN provided artifact-suppressed images better than the input images and comparable to the label images visually and quantitatively, a trend observable regardless of input SEMAC factor and image type (P < .01). CNN suppressed the artifacts better than multilayer perceptron, parallel imaging, and compressed sensing (P < .01). Tests on the patient datasets demonstrated clear metal artifact suppression visually and quantitatively (P < .01). Tests on T1 datasets also demonstrated clear visual metal artifact suppression. CONCLUSION: Our study introduced a new effective way of artificial neural networks to accelerate SEMAC MRI while maintaining the comparable quality of metal artifact suppression. Application on the preliminary patient datasets proved the feasibility in clinical usage, which warrants further investigation.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Meios de Contraste , Humanos , Redes Neurais de Computação , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...