Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2402490, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742686

RESUMO

Considerable attention has been drawn to the use of volatile two-terminal devices relying on the Mott transition for the stochastic generation of probabilistic bits (p-bits) in emerging probabilistic computing. To improve randomness and endurance of bit streams provided by these devices, delicate control of the transient evolution of switchable domains is required to enhance stochastic p-bit generation. Herein, it is demonstrated that the randomness of p-bit streams generated via the consecutive pulse inputs of pump-probe protocols can be increased by the deliberate incorporation of metal nanoparticles (NPs), which influence the transient dynamics of the nanoscale metallic phase in VO2 Mott switches. Among the vertically stacked Pt-NP-containing VO2 threshold switches, those with higher Pt NP density show a considerably wider range of p-bit operation (e.g., up to ≈300% increase in ΔVprobe upon going from (Pt NP/VO2)0 to (Pt NP/VO2)11) and can therefore be operated under the conditions of high speed (400 kbit s-1), low power consumption (14 nJ per bit), and high stability (>105 200 bits) for p-bit generation. Thus, the study presents a novel strategy that exploits nanoscale phase control to maximize the generation of nondeterministic information sources for energy-efficient probabilistic computing hardware.

2.
Nat Commun ; 13(1): 4609, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948541

RESUMO

Mott threshold switching, which is observed in quantum materials featuring an electrically fired insulator-to-metal transition, calls for delicate control of the percolative dynamics of electrically switchable domains on a nanoscale. Here, we demonstrate that embedded metallic nanoparticles (NP) dramatically promote metastability of switchable metallic domains in single-crystal-like VO2 Mott switches. Using a model system of Pt-NP-VO2 single-crystal-like films, interestingly, the embedded Pt NPs provide 33.3 times longer 'memory' of previous threshold metallic conduction by serving as pre-formed 'stepping-stones' in the switchable VO2 matrix by consecutive electical pulse measurement; persistent memory of previous firing during the application of sub-threshold pulses was achieved on a six orders of magnitude longer timescale than the single-pulse recovery time of the insulating resistance in Pt-NP-VO2 Mott switches. This discovery offers a fundamental strategy to exploit the geometric evolution of switchable domains in electrically fired transition and potential applications for non-Boolean computing using quantum materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...