Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37889119

RESUMO

Microbial genome recovery from metagenomes can further explain microbial ecosystem structures, functions and dynamics. Thus, this study developed the Additional Clustering Refiner (ACR) to enhance high-purity prokaryotic and eukaryotic metagenome-assembled genome (MAGs) recovery. ACR refines low-quality MAGs by subjecting them to iterative k-means clustering predicated on contig abundance and increasing bin purity through validated universal marker genes. Synthetic and real-world metagenomic datasets, including short- and long-read sequences, evaluated ACR's effectiveness. The results demonstrated improved MAG purity and a significant increase in high- and medium-quality MAG recovery rates. In addition, ACR seamlessly integrates with various binning algorithms, augmenting their strengths without modifying core features. Furthermore, its multiple sequencing technology compatibilities expand its applicability. By efficiently recovering high-quality prokaryotic and eukaryotic genomes, ACR is a promising tool for deepening our understanding of microbial communities through genome-centric metagenomics.


Assuntos
Metagenoma , Microbiota , Eucariotos/genética , Microbiota/genética , Algoritmos , Metagenômica/métodos , Análise por Conglomerados
2.
J Hazard Mater ; 457: 131761, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37290355

RESUMO

Concerns about antibiotic resistance genes (ARGs) released from wastewaters of livestock or fish farming into the natural environment are increasing, but studies on unculturable bacteria related to the dissemination of antibiotic resistance are limited. Here, we reconstructed 1100 metagenome-assembled genomes (MAGs) to assess the impact of microbial antibiotic resistome and mobilome in wastewaters discharged to Korean rivers. Our results indicate that ARGs harbored in the MAGs were disseminated from wastewater effluents into downstream rivers. Moreover, it was found that ARGs are more commonly co-localized with mobile genetic elements (MGEs) in agricultural wastewater than in river water. Among the effluent-derived phyla, uncultured members of the superphylum Patescibacteria possessed a high number of MGEs, along with co-localized ARGs. Our findings suggest that members of the Patesibacteria are a potential vector for propagating ARGs into the environmental community. Therefore, we propose that the dissemination of ARGs by uncultured bacteria should be further investigated in multiple environments.


Assuntos
Metagenômica , Águas Residuárias , Animais , Metagenômica/métodos , Água , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Antibacterianos/farmacologia , Genes Bacterianos , Rios/microbiologia
3.
J Microbiol Biotechnol ; 32(12): 1561-1572, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36453077

RESUMO

Plastic pollution has been recognized as a serious environmental problem, and microbial degradation of plastics is a potential, environmentally friendly solution to this. Here, we analyzed and compared microbial communities on waste plastic films (WPFs) buried for long periods at four landfill sites with those in nearby soils to identify microbes with the potential to degrade plastics. Fourier-transform infrared spectroscopy spectra of these WPFs showed that most were polyethylene and had signs of oxidation, such as carbon-carbon double bonds, carbon-oxygen single bonds, or hydrogen-oxygen single bonds, but the presence of carbonyl groups was rare. The species richness and diversity of the bacterial and fungal communities on the films were generally lower than those in nearby soils. Principal coordinate analysis of the bacterial and fungal communities showed that their overall structures were determined by their geographical locations; however, the microbial communities on the films were generally different from those in the soils. For the pulled data from the four landfill sites, the relative abundances of Bradyrhizobiaceae, Pseudarthrobacter, Myxococcales, Sphingomonas, and Spartobacteria were higher on films than in soils at the bacterial genus level. At the species level, operational taxonomic units classified as Bradyrhizobiaceae and Pseudarthrobacter in bacteria and Mortierella in fungi were enriched on the films. PICRUSt analysis showed that the predicted functions related to amino acid and carbohydrate metabolism and xenobiotic degradation were more abundant on films than in soils. These results suggest that specific microbial groups were enriched on the WPFs and may be involved in plastic degradation.


Assuntos
Micobioma , Plásticos/metabolismo , Microbiologia do Solo , Bactérias , Solo/química , Biodegradação Ambiental , Instalações de Eliminação de Resíduos , Carbono/metabolismo , Oxigênio/metabolismo , República da Coreia
4.
Microbiome ; 10(1): 157, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36167684

RESUMO

BACKGROUND: DNA methylation in prokaryotes is involved in many different cellular processes including cell cycle regulation and defense against viruses. To date, most prokaryotic methylation systems have been studied in culturable microorganisms, resulting in a limited understanding of DNA methylation from a microbial ecology perspective. Here, we analyze the distribution patterns of several microbial epigenetics marks in the ocean microbiome through genome-centric metagenomics across all domains of life. RESULTS: We reconstructed 15,056 viral, 252 prokaryotic, 56 giant viral, and 6 eukaryotic metagenome-assembled genomes from northwest Pacific Ocean seawater samples using short- and long-read sequencing approaches. These metagenome-derived genomes mostly represented novel taxa, and recruited a majority of reads. Thanks to single-molecule real-time (SMRT) sequencing technology, base modification could also be detected for these genomes. This showed that DNA methylation can readily be detected across dominant oceanic bacterial, archaeal, and viral populations, and microbial epigenetic changes correlate with population differentiation. Furthermore, our genome-wide epigenetic analysis of Pelagibacter suggests that GANTC, a DNA methyltransferase target motif, is related to the cell cycle and is affected by environmental conditions. Yet, the presence of this motif also partitions the phylogeny of the Pelagibacter phages, possibly hinting at a competitive co-evolutionary history and multiple effects of a single methylation mark. CONCLUSIONS: Overall, this study elucidates that DNA methylation patterns are associated with ecological changes and virus-host dynamics in the ocean microbiome. Video Abstract.


Assuntos
Bacteriófagos , Microbiota , Bacteriófagos/genética , DNA , Metilação de DNA/genética , Metagenoma/genética , Metagenômica , Metiltransferases/genética , Microbiota/genética
5.
Microorganisms ; 10(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35208892

RESUMO

BACKGROUND: Acid Blue 113 (AB113) is a typical azo dye, and the resulting wastewater is toxic and difficult to remove. METHODS: The experimental culture was set up for the biodegradation of the azo dye AB113, and the cell growth and dye decolorization were monitored. Transcriptome sequencing was performed in the presence and absence of AB113 treatment. The key pathways and enzymes involved in AB113 degradation were found through pathway analysis and enrichment software (GO, EggNog and KEGG). RESULTS: S. melonis B-2 achieved more than 80% decolorization within 24 h (50 and 100 mg/L dye). There was a positive relationship between cell growth and the azo dye degradation rate. The expression level of enzymes involved in benzoate and naphthalene degradation pathways (NADH quinone oxidoreductase, N-acetyltransferase and aromatic ring-hydroxylating dioxygenase) increased significantly after the treatment of AB113. CONCLUSIONS: Benzoate and naphthalene degradation pathways were the key pathways for AB113 degradation. NADH quinone oxidoreductase, N-acetyltransferase, aromatic ring-hydroxylating dioxygenase and CYP450 were the key enzymes for AB113 degradation. This study provides evidence for the process of AB113 biodegradation at the molecular and biochemical level that will be useful in monitoring the dye wastewater treatment process at the full-scale treatment.

6.
Ecotoxicol Environ Saf ; 227: 112858, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34653940

RESUMO

Hundreds of tons of antibiotics are widely used in aquaculture to prevent microbial infections and promote fish growth. However, the overuse of antibiotics and chemical products can lead to the selection and spreading of antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), which are of great concern considering the threat to public health worldwide. Here, in-depth metagenome sequencing was performed to explore the environmental resistome and ARB distribution across farming stages in shrimp farms and examine anthropogenic effects in nearby coastal waters. A genome-centric analysis using a metagenome binning approach allowed us to accurately investigate the distribution of pathogens and ARG hosts in shrimp farms. The diversity of resistomes was higher in shrimp farms than in coastal waters, and the distribution of resistomes was dependent on the farming stage. In particular, the tetracycline resistance gene was found mainly at the early post-larval stage regardless of the farm. The metagenome-assembled genomes of Vibrio spp. were dominant at this stage and harbored tet34, which is known to confer resistance to oxytetracycline. In addition, opportunistic pathogens such as Francisella, Mycoplasma, Photobacterium, and Vibrio were found in abundance in shrimp farms, which had multiple virulence factors. This study highlights the increased resistance diversity and environmental selection of pathogens in shrimp farms. The use of environmental pollutants on farms may cause an increase in resistome diversity/abundance and the transmission of pathogens to the surrounding environment, which may pose future risks to public health and aquatic organisms.


Assuntos
Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Animais , Antibacterianos , Aquicultura , Fazendas , Genes Bacterianos , República da Coreia
7.
Microorganisms ; 9(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34361939

RESUMO

Effects of bioaugmentation of the composite microbial culture CES-1 on a full scale textile dye wastewater treatment process were investigated in terms of water quality, sludge reduction, dynamics of microbial community structures and their functional genes responsible for degradation of azo dye, and other chemicals. The removal efficiencies for Chemical Oxygen Demand (COD), Total Nitrogen (T-N), Total Phosphorus (T-P), Suspended Solids (SS), and color intensity (96.4%, 78.4, 83.1, 84.4, and 92.0, respectively) 300-531 days after the augmentation were generally improved after bioaugmentation. The denitrification linked to T-N removal appeared to contribute to the concomitant COD removal that triggered a reduction of sludge (up to 22%) in the same period of augmentation. Azo dye and aromatic compound degradation and other downstream pathways were highly metabolically interrelated. Augmentation of CES-1 increased microbial diversity in the later stages of augmentation when a strong microbial community selection of Acinetobacterparvus, Acinetobacterjohnsonii, Marinobacter manganoxydans, Verminephrobacter sp., and Arcobacter sp. occurred. Herein, there might be a possibility that the CES-1 augmentation could facilitate the indigenous microbial community successions so that the selected communities made the augmentation successful. The metagenomic analysis turned out to be a reasonable and powerful tool to provide with new insights and useful biomarkers for the complex environmental conditions, such as the full scale dye wastewater treatment system undergoing bioaugmentation.

8.
Front Plant Sci ; 12: 621466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841456

RESUMO

Xanthomonas euvesicatoria (Xe) is a gram-negative phytopathogenic bacterium that causes bacterial spot disease in tomato/pepper leading to economic losses in plantations. DNA methyltransferases (MTases) are critical for the survival of prokaryotes; however, their functions in phytopathogenic bacteria remain unclear. In this study, we characterized the functions of two putative DNA MTases, XvDMT1 and XvDMT2, in Xe by generating XvDMT1- and XvDMT2-overexpressing strains, Xe(XvDMT1) and Xe(XvDMT2), respectively. Virulence of Xe(XvDMT2), but not Xe(XvDMT1), on tomato was dramatically reduced. To postulate the biological processes involving XvDMTs, we performed a label-free shotgun comparative proteomic analysis, and results suggest that XvDMT1 and XvDMT2 have distinct roles in Xe. We further characterized the functions of XvDMTs using diverse phenotypic assays. Notably, both Xe(XvDMT1) and Xe(XvDMT2) showed growth retardation in the presence of sucrose and fructose as the sole carbon source, with Xe(XvDMT2) being the most severely affected. In addition, biofilm formation and production of exopolysaccharides were declined in Xe(XvDMT2), but not Xe(XvDMT1). Xe(XvDMT2) was more tolerant to EtOH than Xe(XvDMT1), which had enhanced tolerance to sorbitol but decreased tolerance to polymyxin B. Using single-molecule real-time sequencing and methylation-sensitive restriction enzymes, we successfully predicted putative motifs methylated by XvDMT1 and XvDMT2, which are previously uncharacterized 6mA and 5mC DNA MTases, respectively. This study provided new insights into the biological functions of DNA MTases in prokaryotic organisms.

9.
mSystems ; 6(2)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653940

RESUMO

Neonatal calf diarrhea is a common disease leading to a major economic loss for cattle producers worldwide. Several infectious and noninfectious factors are implicated in calf diarrhea, but disease control remains problematic because of the multifactorial etiology of the disease. Here, we conducted diagnostic multiplex PCR assay and meta-omics analysis (16S rRNA gene-based metataxonomics and untargeted transcriptional profiling) of rectal content of normal and diarrheic beef calves (n = 111). In the diarrheic calf gut, we detected both microbial compositional dysbiosis (i.e., increased abundances of the family Enterobacteriaceae members and their lytic bacteriophages) and functional dysbiosis (i.e., elevated levels of aerobic respiration and virulence potential). The calf diarrheic transcriptome mirrored the gene expression of the bovine host and was enriched in cellular pathways of sulfur metabolism, innate immunity, and gut motility. We then isolated 12 nontoxigenic Enterobacteriaceae strains from the gut of diarrheic calves. Feeding a strain mixture to preweaning mice resulted in a significantly higher level of fecal moisture content, with decreased body weight gain and shortened colon length. The presented findings suggest that gut inflammation followed by a prolonged expansion of nontoxigenic autochthonous Enterobacteriaceae contributes to the onset of diarrhea in preweaning animals.IMPORTANCE Calf diarrhea is the leading cause of death of neonatal calves worldwide. Several infectious and noninfectious factors are implicated in calf diarrhea, but disease control remains problematic because of the multifactorial etiology of the disease. The major finding of the current study centers around the observation of microbial compositional and functional dysbiosis in rectal samples from diarrheic calves. These results highlight the notion that gut inflammation followed by a prolonged expansion of autochthonous Enterobacteriaceae contributes to the onset of calf diarrhea. Moreover, this condition possibly potentiates the risk of invasion of notorious enteric pathogens, including Salmonella spp., and the emergence of inflammation-resistant (or antibiotic-resistant) microbiota via active horizontal gene transfer mediated by lytic bacteriophages.

10.
Foodborne Pathog Dis ; 18(6): 378-387, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33656917

RESUMO

The frequent occurrence of sequence-type 398 (ST398) livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in pigs has become a major public health concern owing to the increased zoonotic potential of the pathogen. Recently, a novel oxazolidinone resistance gene, chloramphenicol-florfenicol resistant (cfr), conferring multiresistance phenotypes to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A (PhLOPSA), has been found among ST398 LA-MRSA strains isolated from pigs. In this study, we report the first in silico genome analysis of a linezolid-resistant ST398 LA-MRSA strain, designated PJFA-521M, recovered from a pig in Korea. Genomic analyses revealed that the presence of the cfr gene was responsible for the observed linezolid resistance in the PJFA-521M strain. Moreover, newer antimicrobial resistance genes, such as the dfrG, aadE, spw, lsa(E), lnu(B), and fexA genes, were found in the PJFA-521M strain. In addition to the genetic elements for antimicrobial resistance, the carriage of various virulence genes for adherence, invasion, and immunomodulation was identified in the genome, especially within several mobile genetic elements (MGEs). The presence of multiple antimicrobial resistance genes and virulence genes on MGEs in the genome of a linezolid-resistant ST398 LA-MRSA should raise awareness regarding the use of other antimicrobial agents in pig farms and may also provide selective pressure for the prevalence of the cfr gene and the associated multidrug-resistant phenotype.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/efeitos dos fármacos , Linezolida/farmacologia , Staphylococcus aureus Resistente à Meticilina/genética , Animais , Gado , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , República da Coreia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , Sus scrofa/microbiologia , Suínos , Doenças dos Suínos/microbiologia , Fatores de Virulência/genética
11.
J Microbiol ; 59(3): 242-248, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33624263

RESUMO

DNA methylation is known as a universal mechanism of epigenetic regulation in all kingdoms of life. Particularly, given that prokaryotes lack key elements such as histones and nucleosomes that can structurally modify DNA, DNA methylation is considered a major epigenetic regulator in these organisms. However, because DNA methylation studies have focused primarily on eukaryotes, the mechanism of prokaryotic DNA methylation has been less studied than in eukaryotes. DNA methylation in prokaryotes plays an important role in regulating not only the host defense system, but also the cell cycle, gene expression, and virulence that can respond directly to the environment. Recent advances in sequencing techniques capable of detecting methylation signals have allowed for the characterization of prokaryotic genome-wide epigenetic regulation. In this review, we describe representative examples of cellular events regulated by DNA methylation in prokaryotes, from early studies to current applications.


Assuntos
Bactérias/genética , Metilação de DNA , DNA Bacteriano/genética , Bactérias/metabolismo , DNA Bacteriano/metabolismo , Epigênese Genética , Genoma Bacteriano
12.
Microbiome ; 8(1): 2, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31910889

RESUMO

BACKGROUND: The impact of human activities on the environmental resistome has been documented in many studies, but there remains the controversial question of whether the increased antibiotic resistance observed in anthropogenically impacted environments is just a result of contamination by resistant fecal microbes or is mediated by indigenous environmental organisms. Here, to determine exactly how anthropogenic influences shape the environmental resistome, we resolved the microbiome, resistome, and mobilome of the planktonic microbial communities along a single river, the Han, which spans a gradient of human activities. RESULTS: The bloom of antibiotic resistance genes (ARGs) was evident in the downstream regions and distinct successional dynamics of the river resistome occurred across the spatial continuum. We identified a number of widespread ARG sequences shared between the river, human gut, and pathogenic bacteria. These human-related ARGs were largely associated with mobile genetic elements rather than particular gut taxa and mainly responsible for anthropogenically driven bloom of the downstream river resistome. Furthermore, both sequence- and phenotype-based analyses revealed environmental relatives of clinically important proteobacteria as major carriers of these ARGs. CONCLUSIONS: Our results demonstrate a more nuanced view of the impact of anthropogenic activities on the river resistome: fecal contamination is present and allows the transmission of ARGs to the environmental resistome, but these mobile genes rather than resistant fecal bacteria proliferate in environmental relatives of their original hosts. Video abstract.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal , Genes MDR , Rios/microbiologia , Bactérias/genética , Bactérias/patogenicidade , Fezes/microbiologia , Transferência Genética Horizontal , Humanos , Sequências Repetitivas Dispersas , Metagenoma , República da Coreia , Esgotos/microbiologia
13.
J Microbiol ; 57(10): 865-873, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31571125

RESUMO

Lignocellulose composed of complex carbohydrates and aromatic heteropolymers is one of the principal materials for the production of renewable biofuels. Lignocellulose-degrading genes from cold-adapted bacteria have a potential to increase the productivity of biological treatment of lignocellulose biomass by providing a broad range of treatment temperatures. Antarctic soil metagenomes allow to access novel genes encoding for the cold-active lignocellulose-degrading enzymes, for biotechnological and industrial applications. Here, we investigated the metagenome targeting cold-adapted microbes in Antarctic organic matter-rich soil (KS 2-1) to mine lignolytic and celluloytic enzymes by performing single molecule, real-time metagenomic (SMRT) sequencing. In the assembled Antarctic metagenomic contigs with relative long reads, we found that 162 (1.42%) of total 11,436 genes were annotated as carbohydrate-active enzymes (CAZy). Actinobacteria, the dominant phylum in this soil's metagenome, possessed most of candidates of lignocellulose catabolic genes like glycoside hydrolase families (GH13, GH26, and GH5) and auxiliary activity families (AA7 and AA3). The predicted lignocellulose degradation pathways in Antarctic soil metagenome showed synergistic role of various CAZyme harboring bacterial genera including Streptomyces, Streptosporangium, and Amycolatopsis. From phylogenetic relationships with cellular and environmental enzymes, several genes having potential for participating in overall lignocellulose degradation were also found. The results indicated the presence of lignocellulose-degrading bacteria in Antarctic tundra soil and the potential benefits of the lignocelluolytic enzymes as candidates for cold-active enzymes which will be used for the future biofuel-production industry.


Assuntos
Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Lignina/metabolismo , Metagenoma , Microbiologia do Solo , Regiões Antárticas , Bactérias/classificação , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Biocombustíveis/análise , Temperatura Baixa , Filogenia , Solo/química , Tundra
14.
World J Microbiol Biotechnol ; 35(10): 149, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31549239

RESUMO

The goal of this study was to investigate the relationship between the denitrification process and carbon metabolism in a full-scale tannery wastewater treatment plant bioaugmented with the microbial consortium BM-S-1. The metagenomic analysis of the microbial community showed that Brachymonas denitrificans, a known denitrifier, was present at a high level in the treatment stages of buffering (B), primary aeration (PA), and sludge digestion (SD). The occurrences of the amino acid-degrading enzymes alpha ketoglutarate dehydrogenase (α-KGDH) and tryptophan synthase were highly correlated with the presence of denitrification genes, such as napA, narG, nosZ and norB. The occurrence of glutamate dehydrogenase (GDH) was also highly paralleled with the occurrence of denitrification genes such as napA, narG, and norZ. The denitrification genes (nosZ, narG, napA, norB and nrfA) and amino acid degradation enzymes (tryptophan synthase, α-KGDH and pyridoxal phosphate dependent enzymes) were observed at high levels in B. This indicates that degradation of amino acids and denitrification of nitrate may potentially occur in B. The high concentrations of the fatty acid degradation enzyme groups (enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and ß-ketothiolase) were observed together with the denitrification genes, such as napA, narG and nosZ. Phospholipase/carboxylesterase, enoyl-CoA hydratase/isomerase, acyl-CoA dehydrogenase, phenylacetate degradation enzyme and 3-hydroxyacyl-CoA dehydrogenase 2 were also dominant in B. All these results clearly indicate that the denitrification pathways are potentially linked to the degradation pathways of amino acids and fatty acids whose degradation products go through the TCA cycle, generating the NADH that is used as electron donors for denitrification.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , Águas Residuárias/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Desnitrificação , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Metagenômica , Consórcios Microbianos , Nitratos/metabolismo , Esgotos/química , Esgotos/microbiologia , Triptofano Sintase/genética , Triptofano Sintase/metabolismo , Purificação da Água/instrumentação , Purificação da Água/métodos
15.
Front Microbiol ; 10: 1858, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456776

RESUMO

Using a high-throughput metagenomic approach, we evaluated nifH-harboring bacterial communities and their assembly in the Gotjawal forest, which was naturally formed on basalt rocks with thin layer of soil. Significant differences in soil properties and community structure were observed in comparison with similar communities in various habitats, including other lava-formed forests (on Jeju Island and in Hawaii) and in regions with high humidity (Florida) or low temperatures (Alaska). nifH-harboring bacterial communities were found to assemble along gradients of environmental factors, particularly cation-exchange capacity. Unlike in other regions, in the Gotjawal forest, Paenibacillus and Clostridium, which belong to the phylum Firmicutes, were present in significantly higher proportion than in other regions. Network analysis suggested that much fewer co-occurrence relationships occurred in the Gotjawal forest than in other lava-formed forests. Our results indicate that the unique nifH-harboring bacterial community and its assembly in the Gotjawal forest are due to its distinctive soil properties, which has implications for microbial interactions and functional potentials.

16.
Plant Pathol J ; 32(6): 500-507, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27904456

RESUMO

Single-molecule real-time (SMRT) sequencing allows identification of methylated DNA bases and methylation patterns/motifs at the genome level. Using SMRT sequencing, diverse bacterial methylomes including those of Helicobacter pylori, Lactobacillus spp., and Escherichia coli have been determined, and previously unreported DNA methylation motifs have been identified. However, the methylomes of Xanthomonas species, which belong to the most important plant pathogenic bacterial genus, have not been documented. Here, we report the methylomes of Xanthomonas axonopodis pv. glycines (Xag) strain 8ra and X. campestris pv. vesicatoria (Xcv) strain 85-10. We identified N6-methyladenine (6mA) and N4-methylcytosine (4mC) modification in both genomes. In addition, we assigned putative DNA methylation motifs including previously unreported methylation motifs via REBASE and MotifMaker, and compared methylation patterns in both species. Although Xag and Xcv belong to the same genus, their methylation patterns were dramatically different. The number of 4mC DNA bases in Xag (66,682) was significantly higher (29 fold) than in Xcv (2,321). In contrast, the number of 6mA DNA bases (4,147) in Xag was comparable to the number in Xcv (5,491). Strikingly, there were no common or shared motifs in the 10 most frequently methylated motifs of both strains, indicating they possess unique species- or strain-specific methylation motifs. Among the 20 most frequent motifs from both strains, for 9 motifs at least 1% of the methylated bases were located in putative promoter regions. Methylome analysis by SMRT sequencing technology is the first step toward understanding the biology and functions of DNA methylation in this genus.

17.
J Biotechnol ; 223: 36-7, 2016 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-26916415

RESUMO

Massilia sp. NR 4-1 was a violacein producing strain newly isolated from topsoil under nutmeg tree, Torreya nucifera in Korean national monument Bijarim Forest. Violacein is a novel class of drug exhibiting anticancer and antibiotic activities originated from l-tryptophan. Here, we present the complete genome of Massilia sp. strain NR 4-1 of 6,361,416bp and total 5285 coding sequences (CDSs) including a complete violacein biosynthesis pathway, vioABCDE. The genome sequence of Massilia sp. NR 4-1 will provide stable and efficient biotechnological applications of violacein production.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano , Oxalobacteraceae/genética , Análise de Sequência de DNA/métodos , Antibacterianos/metabolismo , Antineoplásicos/metabolismo , Proteínas de Bactérias/metabolismo , Composição de Bases , Vias Biossintéticas , Tamanho do Genoma , Indóis/metabolismo , Oxalobacteraceae/isolamento & purificação , Oxalobacteraceae/metabolismo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...