Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35186094

RESUMO

The potential deodorizing effects of Saccharina japonica have been evaluated by determining their deodorizing performance, but they are yet to be validated in experimental animals. The deodorizing effects of S. japonica were examined in an animal model using a novel odor marker associated with aging by comparing the concentration of odor component in urine obtained from two- and 10-month-old ICR mice using gas chromatography-mass spectrometry (GC-MS), and the changes in the trimethylamine (TMA) concentration, ammonia level, and structure of sweat gland were determined after exposing 10-month-old ICR mice to 70% ethanol extract of S. japonica (EESJ) for four weeks. In vitro analysis was performed to confirm the composition of EESJ with respect to the total flavonoid contents (TFC, 28.6 ± 2.5 mg/g), total polyphenol contents (TPC, 107.3 ± 8.9 mg/g), and total condensed tannin contents (TTC, 65.7 ± 5.2 mg/g) contents, as well as to the deodorizing performance to ammonia and acetic acid (91.2 ± 7.8% and 54.8 ± 6.3%, respectively). In vivo analysis revealed TMA to be the novel odor marker associated with aging among the 19 odor components evaluated, considering the higher concentration in the urine of 10-month-old ICR mice. The peak area of TMA on the gas chromatogram was significantly lower in the 10-month-old ICR mice treated with EESJ than in the two-month-old mice. A similar decrease was observed in the level of ammonia obtained from the dirty bedding of the EESJ-treated group. Moreover, tissues obtained from the mouse foot of the group exposed to EESJ showed a dose-dependent decrease in the gland tube number of sweat glands and the TMA dehydrogenase transcription level. Overall, these results provide novel evidence that the administration of EESJ helps reduce the body TMA and ammonia concentrations, resulting in reduced odor and a decrease in the number of sweat glands and the expression of TMA dehydrogenase in the ICR mouse feet.

2.
Lab Anim Res ; 31(1): 13-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25806079

RESUMO

Some biological effects of Red Liriope platyphylla (RLP) on various chronic diseases including Alzheimer's disease, diabetes and obesity were suggested after a report of the production from Liriope platyphylla (L. platyphylla, LP) roots using a steaming process. To examine the beneficial effects of ethanol extracts RLP (EEtRLP) on the vascular dysfunction of hypertension, alterations in key factors related to vascular regulation and antioxidant conditions were investigated in spontaneously hypertensive rats (SHR) after EEtRLP treatment for 2 weeks. High levels of 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity were detected in 500 or 1,000 mg/mL EEtRLP. Although no significant improvement of systolic blood pressure or aortic wall thickness were observed in the EEtRLP treated group, the expression level of angiotensin converting enzyme (ACE) and ACE2 increased significantly after EEtRLP treatment. Moreover, the concentration of aldosterone and K ion in serum rapidly recovered in the EEtRLP treated group relative to the vehicle treated group. Furthermore, the endothelial nitric oxide synthase (eNOS) expression and superoxide dismutase (SOD) activity were significantly increased in the EEtRLP treated group relative to the vehicle treated group, while the level of malondialdehyde (MDA) and NOx in the serum of the same group were recovered to the level of Wistar Kyoto (WKY) rats. Overall, the results presented herein provide novel evidence that EEtRLP treatment may improve vascular dysfunction in the aorta of the SHR through up regulation of the antioxidant state and down regulation of aldosterone and K ion concentration. These results also suggest that EEtRLP may be a potential candidate for treatment of various chronic diseases showing vascular dysfunction.

3.
Lab Anim Res ; 30(1): 35-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24707303

RESUMO

Loperamide has long been known as an opioid-receptor agonist useful as a drug for treatment of diarrhea resulting from gastroenteritis or inflammatory bowel disease as well as to induce constipation. To determine and characterize putative biomarkers that can predict constipation induced by loperamide treatment, alteration of endogenous metabolites was measured in the serum of Sprague Dawley (SD) rats treated with loperamide for 3 days using (1)H nuclear magnetic resonance ((1)H NMR) spectral data. The amounts and weights of stool and urine excretion were significantly lower in the loperamide-treated group than the No-treated group, while the thickness of the villus, crypt layer, and muscle layer was decreased in the transverse colon of the same group. The concentrations of aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and creatinine (Cr) were also slightly changed in the loperamide-treated group, although most of the serum components were maintained at a constant level. Furthermore, pattern recognition of endogenous metabolites showed completely separate clustering of the serum analysis parameters between the No-treated group and loperamide-treated group. Among 35 endogenous metabolites, four amino acids (alanine, glutamate, glutamine and glycine) and six endogenous metabolites (acetate, glucose, glycerol, lactate, succinate and taurine) were dramatically decreased in loperamide-treated SD rats. These results provide the first data pertaining to metabolic changes in SD rats with loperamide-induced constipation. Additionally, these findings correlate the changes in 10 metabolites with constipation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...