Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398598

RESUMO

The effects of solution concentration and pH on the formation and surface structure of 2-pyrimidinethiolate (2PymS) self-assembled monolayers (SAMs) on Au(111) via the adsorption of 2,2'-dipyrimidyl disulfide (DPymDS) were examined using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). STM observations revealed that the formation and structural order of 2PymS SAMs were markedly influenced by the solution concentration and pH. 2PymS SAMs formed in a 0.01 mM ethanol solution were mainly composed of a more uniform and ordered phase compared with those formed in 0.001 mM or 1 mM solutions. SAMs formed in a 0.01 mM solution at pH 2 were composed of a fully disordered phase with many irregular and bright aggregates, whereas SAMs formed at pH 7 had small ordered domains and many bright islands. As the solution pH increased from pH 7 to pH 12, the surface morphology of 2PymS SAMs remarkably changed from small ordered domains to large ordered domains, which can be described as a (4√2 × 3)R51° packing structure. XPS measurements clearly showed that the adsorption of DPymDS on Au(111) resulted in the formation of 2PymS (thiolate) SAMs via the cleavage of the disulfide (S-S) bond in DPymDS, and most N atoms in the pyrimidine rings existed in the deprotonated form. The results herein will provide a new insight into the molecular self-assembly behaviors and adsorption structures of DPymDS molecules on Au(111) depending on solution concentration and pH.

2.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834654

RESUMO

We examined the surface structure, binding conditions, electrochemical behavior, and thermal stability of self-assembled monolayers (SAMs) on Au(111) formed by N-(2-mercaptoethyl)heptanamide (MEHA) containing an amide group in an inner alkyl chain using scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) to understand the effects of an internal amide group as a function of deposition time. The STM study clearly showed that the structural transitions of MEHA SAMs on Au(111) occurred from the liquid phase to the formation of a closely packed and well-ordered ß-phase via a loosely packed α-phase as an intermediate phase, depending on the deposition time. XPS measurements showed that the relative peak intensities of chemisorbed sulfur against Au 4f for MEHA SAMs formed after deposition for 1 min, 10 min, and 1 h were calculated to be 0.0022, 0.0068, and 0.0070, respectively. Based on the STM and XPS results, it is expected that the formation of a well-ordered ß-phase is due to an increased adsorption of chemisorbed sulfur and the structural rearrangement of molecular backbones to maximize lateral interactions resulting from a longer deposition period of 1 h. CV measurements showed a significant difference in the electrochemical behavior of MEHA and decanethiol (DT) SAMs as a result of the presence of an internal amide group in the MEHA SAMs. Herein, we report the first high-resolution STM image of well-ordered MEHA SAMs on Au(111) with a (3 × 2√3) superlattice (ß-phase). We also found that amide-containing MEHA SAMs were thermally much more stable than DT SAMs due to the formation of internal hydrogen networks in MEHA SAMs. Our molecular-scale STM results provide new insight into the growth process, surface structure, and thermal stability of amide-containing alkanethiols on Au(111).


Assuntos
Ouro , Compostos de Sulfidrila , Adsorção , Ouro/química , Compostos de Sulfidrila/química , Espectroscopia Fotoeletrônica , Enxofre
3.
Molecules ; 27(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36080145

RESUMO

To probe the effects of deposition temperature on the formation and structural order of self-assembled monolayers (SAMs) on Au(111) prepared by vapor deposition of 2-(2-methoxyethoxy)ethanethiol (CH3O(CH2)2O(CH2)2SH, EG2) for 24 h, we examined the surface structure and electrochemical behavior of the resulting EG2 SAMs using scanning tunneling microscopy (STM) and cyclic voltammetry (CV). STM observations clearly revealed that EG2 SAMs vapor-deposited on Au(111) at 298 K were composed of a disordered phase on the entire Au surface, whereas those formed at 323 K showed improved structural order, showing a mixed phase of ordered and disordered phases. Moreover, at 348 K, uniform and highly ordered EG2 SAMs on Au(111) were formed with a (2 × 3√3) packing structure. CV measurements showed sharp reductive desorption (RD) peaks at -0.818, -0.861, and -0.880 V for EG2 SAM-modified Au electrodes formed at 298, 323, and 348 K, respectively. More negative potential shifts of RD peaks with increasing deposition temperature are attributed to an increase in van der Waals interactions between EG2 molecular backbones resulting from the improved structural quality of EG2 SAMs. Our results obtained herein provide new insights into the formation and thermally driven structural order of oligo(ethylene glycol)-terminated SAMs vapor-deposited on Au(111).

4.
Nanomaterials (Basel) ; 12(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35889586

RESUMO

Photocatalysis driven by natural sunlight is an attractive approach to removing pollutants from wastewater. Although TiO2-based photocatalysts using various support nano-materials with high catalytic activity and reusability have been developed for purifying wastewater, the centrifugal separation methods used for the nanocatalysts limit their use for treating large amounts of water. Here, we prepared a TiO2 nano-catalyst supported on a halloysite nanotube (HNT)-encapsulated alginate capsule (TiO2@HNT/Alcap) to recapture the catalysts rapidly without centrifugation. The structure of TiO2@HNT/Alcap was characterized by X-ray diffraction, SEM, and TGA. In our system, the combination of HNTs and alginate capsules (Alcaps) improved the efficiency of adsorption of organic pollutants to TiO2, and their milli = meter scale structure allowed ultra-fast filtering using a strainer. The TiO2@HNT/Alcaps showed ~1.7 times higher adsorption of rhodamine B compared to empty alginate capsules and also showed ~10 and ~6 times higher degradation rate compared to the HNT/Alcaps and TiO2/Alcaps, respectively.

5.
Nat Commun ; 12(1): 4207, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244512

RESUMO

Despite their great utility in synthetic and materials chemistry, Diels-Alder (DA) and retro Diels-Alder (rDA) reactions have been vastly unexplored in promoting self-assembly processes. Herein we describe the first example of a retro Diels-Alder (rDA) reaction-triggered self-assembly method. Release of the steric bulkiness associated with the bridged bicyclic DA adduct by the rDA reaction allowed generation of two building blocks that spontaneously self-assembled to form a supramolecular polymer. By employing photopolymerizable lipid building blocks, we demonstrated the efficiency of the rDA-based self-assembly strategy. Generation of reactive functional groups (maleimide and furan) that can be used for further modification of the supramolecular polymer is an additional meritorious feature of the rDA-based approach. Advantage was taken of reactive functional groups to fabricate stimulus-responsive selective and tunable colorimetric sensors. The strategy developed in this study should be useful for the design of systems that participate in triggered molecular assembly.

6.
J Nanosci Nanotechnol ; 20(8): 4955-4960, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126681

RESUMO

Growth processes and electrochemical behaviors of 4-fluorobenzenethiol (4-FBT) self-assembled monolayers (SAMs) on Au(111) prepared by vapor deposition at 323 K were examined using scanning tunneling microscopy (STM) and cyclic voltammetry (CV). STM imaging revealed that 4-FBT SAMs at the initial growth stage (deposition for 1 min) were mainly composed of bright molecular aggregates and liquid-like disordered phase. After longer deposition for 3 min, 4-FBT SAMs had three distinct surface features: a few molecular aggregates, small ordered domains, and disordered phase. These small ordered domains with sizes ranging from 5 to 10 nm had a (4× âˆš3)R30° packing structure. As deposition time increased to 24 h, long-range ordered domains larger than 40 nm were formed on Au(111) surfaces. From this STM study, we demonstrate that phase transitions of 4-FBT SAMs on Au(111) occur from molecular aggregates to large ordered domains via formation of small ordered domains as deposition time increases. CV measurements showed reductive desorption peaks for 4-FBT SAMs in the range of -638~-648 mV regardless of SAM morphology, suggesting that S-Au binding strength of 4-FBT SAMs on Au electrodes is a dominant factor for electrochemical stability.

7.
J Nanosci Nanotechnol ; 18(10): 7053-7057, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29954532

RESUMO

Displacement processes of pre-covered cyclohexanethiol (CHT) self-assembled monolayers (SAMs) by 4-fluorobenzenethiol (4-FBT) on Au(111) were examined as a function of displacement time by scanning tunneling microscopy (STM) and water static contact angle (CA) measurements. STM imaging revealed that the adsorption of 4-FBT on Au(111) in a 1 mM ethanol solution at room temperature for 24 h generated disordered SAMs, whereas well-ordered 4-FBT SAMs with a (4√6 × âˆš3)R5° packing structure were formed over the entire Au(111) surfaces via the displacement of pre-covered CHT SAMs by 4-FBT molecules. The CA measurements also showed that CA values increase with increasing displacement time, reflecting that the displacement reaction took place and the resulting SAMs had greater hydrophobicity compared with CHT SAMs. In this study, we found that the displacement technique using CHT SAMs as a molecular template is very useful in obtaining 4-FBT SAMs with a high degree of structural order and large ordered domains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...