Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 180(15): 2018-2034, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36908040

RESUMO

BACKGROUND AND PURPOSE: Cardiovascular disease affects up to half of the patients with chronic obstructive pulmonary disease (COPD), exerting deleterious impact on health outcomes and survivability. Vascular endothelial dysfunction marks the onset of cardiovascular disease. The present study examined the effect of a potent NADPH Oxidase (NOX) inhibitor and free-radical scavenger, apocynin, on COPD-related cardiovascular disease. EXPERIMENTAL APPROACH: Male BALB/c mice were exposed to either room air (Sham) or cigarette smoke (CS) generated from 9 cigarettes·day-1 , 5 days a week for up to 24 weeks with or without apocynin treatment (5 mg·kg-1 ·day-1 , intraperitoneal injection). KEY RESULTS: Eight-weeks of apocynin treatment reduced airway neutrophil infiltration (by 42%) and completely preserved endothelial function and endothelial nitric oxide synthase (eNOS) availability against the oxidative insults of cigarette smoke exposure. These preservative effects were maintained up until the 24-week time point. 24-week of apocynin treatment markedly reduced airway inflammation (reduced infiltration of macrophage, neutrophil and lymphocyte), lung function decline (hyperinflation) and prevented airway collagen deposition by cigarette smoke exposure. CONCLUSION AND IMPLICATIONS: Limiting NOX activity may slow COPD progression and lower cardiovascular disease risk, particularly when signs of oxidative stress become evident.


Assuntos
Doenças Cardiovasculares , Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Lesões do Sistema Vascular , Camundongos , Animais , Masculino , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Estresse Oxidativo , Pulmão
2.
Brain Behav Immun ; 109: 292-307, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36775074

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major, incurable respiratory condition that is primarily caused by cigarette smoking (CS). Neurocognitive disorders including cognitive dysfunction, anxiety and depression are highly prevalent in people with COPD. It is understood that increased lung inflammation and oxidative stress from CS exposure may 'spill over' into the systemic circulation to promote the onset of these extra-pulmonary comorbidities, and thus impacts the quality of life of people with COPD. The precise role of the 'spill-over' of inflammation and oxidative stress in the onset of COPD-related neurocognitive disorders are unclear. The present study investigated the impact of chronic CS exposure on anxiety-like behaviors and social recognition memory, with a particular focus on the role of the 'spill-over' of inflammation and oxidative stress from the lungs. Adult male BALB/c mice were exposed to either room air (sham) or CS (9 cigarettes per day, 5 days a week) for 24 weeks and were either daily co-administered with the NOX2 inhibitor, apocynin (5 mg/kg, in 0.01 % DMSO diluted in saline, i.p.) or vehicle (0.01 % DMSO in saline) one hour before the initial CS exposure of the day. After 23 weeks, mice underwent behavioral testing and physiological diurnal rhythms were assessed by monitoring diurnal regulation profiles. Lungs were collected and assessed for hallmark features of COPD. Consistent with its anti-inflammatory and oxidative stress properties, apocynin treatment partially lessened lung inflammation and lung function decline in CS mice. CS-exposed mice displayed marked anxiety-like behavior and impairments in social recognition memory compared to sham mice, which was prevented by apocynin treatment. Apocynin was unable to restore the decreased Bmal1-positive cells, key in cells in diurnal regulation, in the suprachiasmatic nucleus of the hypothalamus to that of sham levels. CS-exposed mice treated with apocynin was associated with a restoration of microglial area per cell and basal serum corticosterone. This data suggests that we were able to model the CS-induced social recognition memory impairments seen in humans with COPD. The preventative effects of apocynin on memory impairments may be via a microglial dependent mechanism.


Assuntos
Fumar Cigarros , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Humanos , Adulto , Masculino , Camundongos , Animais , Fumar Cigarros/efeitos adversos , Microglia , Dimetil Sulfóxido/farmacologia , Qualidade de Vida , Pulmão , Pneumonia/complicações , Núcleo Supraquiasmático , Hipotálamo , Inflamação/complicações , Camundongos Endogâmicos C57BL
3.
Front Mol Neurosci ; 15: 893083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656006

RESUMO

Background and Objective: Neurocognitive dysfunction is present in up to ∼61% of people with chronic obstructive pulmonary disease (COPD), with symptoms including learning and memory deficiencies, negatively impacting the quality of life of these individuals. As the mechanisms responsible for neurocognitive deficits in COPD remain unknown, we explored whether chronic cigarette smoke (CS) exposure causes neurocognitive dysfunction in mice and whether this is associated with neuroinflammation and an altered neuropathology. Methods: Male BALB/c mice were exposed to room air (sham) or CS (9 cigarettes/day, 5 days/week) for 24 weeks. After 23 weeks, mice underwent neurocognitive tests to assess working and spatial memory retention. At 24 weeks, mice were culled and lungs were collected and assessed for hallmark features of COPD. Serum was assessed for systemic inflammation and the hippocampus was collected for neuroinflammatory and structural analysis. Results: Chronic CS exposure impaired lung function as well as driving pulmonary inflammation, emphysema, and systemic inflammation. CS exposure impaired working memory retention, which was associated with a suppression in hippocampal microglial number, however, these microglia displayed a more activated morphology. CS-exposed mice showed changes in astrocyte density as well as a reduction in synaptophysin and dendritic spines in the hippocampus. Conclusion: We have developed an experimental model of COPD in mice that recapitulates the hallmark features of the human disease. The altered microglial/astrocytic profiles and alterations in the neuropathology within the hippocampus may explain the neurocognitive dysfunction observed during COPD.

4.
Front Pharmacol ; 13: 859146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370652

RESUMO

Limb muscle dysfunction is a hallmark of Chronic Obstructive Pulmonary Disease (COPD) which is further worsened following a viral-induced acute exacerbation of COPD (AECOPD). An amplified airway inflammation underlies the aggravated respiratory symptoms seen during AECOPD, however, its contributory role to limb muscle dysfunction is unclear. The present study examined the impact of influenza A virus (IAV)-induced exacerbation on hind limb muscle parameters. Airway inflammation was established in male BALB/c mice by exposure to cigarette smoke (CS) for 8 weeks. Exacerbation was then induced via inoculation with IAV, and various lung and muscle parameters were assessed on day 3 (peak of airway inflammation) and day 10 (resolution phase) post-infection. IAV infection exacerbated CS-induced airway inflammation as evidenced by further increases in immune cell counts within bronchoalveolar lavage fluid. Despite no significant impact on muscle mass, IAV exacerbation worsened the force-generating capacity of the tibialis anterior (TA) muscle. Protein oxidation and myogenic disruption was observed in the TA following CS exposure, however, IAV exacerbation did not augment these detrimental processes. To further explore the contributory role of airway inflammation on myogenic signaling, cultured myotubes were exposed to conditioned medium (CM) derived from bronchial epithelial cells stimulated with polyinosinic:polycytidylic acid and cigarette smoke extract (CSE). Despite an amplified inflammatory response in the lung epithelial cells, the CM derived from these cells did not potentiate myogenic disruption in the C2C12 myotubes. In conclusion, our data suggest that certain parameters of limb muscle dysfunction seen during viral-induced AECOPD may be independent of airway inflammation.

5.
J Neuroinflammation ; 19(1): 72, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351173

RESUMO

BACKGROUND: Cigarette smoking (CS) is the leading cause of chronic obstructive pulmonary disease (COPD). The "spill-over" of pulmonary inflammation into the systemic circulation may damage the brain, leading to cognitive dysfunction. Cessation of CS can improve pulmonary and neurocognitive outcomes, however, its benefit on the neuroinflammatory profile remains uncertain. Here, we investigate how CS exposure impairs neurocognition and whether this can be reversed with CS cessation or an antioxidant treatment. METHODS: Male BALB/c mice were exposed to CS (9 cigarettes/day for 8 weeks) followed by 4 weeks of CS cessation. Another cohort of CS-exposed mice were co-administrated with a glutathione peroxidase mimetic, ebselen (10 mg/kg) or vehicle (5% CM-cellulose). We assessed pulmonary inflammation, spatial and working memory, and the hippocampal microglial, oxidative and synaptic profiles. RESULTS: CS exposure increased lung inflammation which was reduced following CS cessation. CS caused spatial and working memory impairments which were attributed to hippocampal microglial activation and suppression of synaptophysin. CS cessation did not improve memory deficits or alter microglial activation. Ebselen completely prevented the CS-induced working and spatial memory impairments, which was associated with restored synaptophysin expression without altering microglial activation. CONCLUSION: We were able to model the CS-induced memory impairment and microglial activation seen in human COPD. The preventative effects of ebselen on memory impairment is likely to be dependent on a preserved synaptogenic profile. Cessation alone also appears to be insufficient in correcting the memory impairment, suggesting the importance of incorporating antioxidant therapy to help maximising the benefit of cessation.


Assuntos
Fumar Cigarros , Disfunção Cognitiva , Animais , Fumar Cigarros/efeitos adversos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Hipocampo , Humanos , Isoindóis , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organosselênicos , Sinaptofisina
6.
Clin Sci (Lond) ; 136(8): 537-555, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35343564

RESUMO

People with chronic obstructive pulmonary disease (COPD) are susceptible to respiratory infections which exacerbate pulmonary and/or cardiovascular complications, increasing their likelihood of death. The mechanisms driving these complications remain unknown but increased oxidative stress has been implicated. Here we investigated whether influenza A virus (IAV) infection, following chronic cigarette smoke (CS) exposure, worsens vascular function and if so, whether the antioxidant ebselen alleviates this vascular dysfunction. Male BALB/c mice were exposed to either room air or CS for 8 weeks followed by inoculation with IAV (Mem71, 1 × 104.5 pfu). Mice were treated with ebselen (10 mg/kg) or vehicle (5% w/v CM-cellulose in water) daily. Mice were culled 3- and 10-days post-infection, and their lungs lavaged to assess inflammation. The thoracic aorta was excised to investigate endothelial and smooth muscle dilator responses, expression of key vasodilatory and oxidative stress modulators, infiltrating immune cells and vascular remodelling. CS increased lung inflammation and caused significant vascular endothelial dysfunction, which was worsened by IAV infection. CS-driven increases in vascular oxidative stress, aortic wall remodelling and suppression of endothelial nitric oxide synthase (eNOS) were not affected by IAV infection. CS and IAV infection significantly enhanced T cell recruitment into the aortic wall. Ebselen abolished the exaggerated lung inflammation, vascular dysfunction and increased T cell infiltration in CS and IAV-infected mice. Our findings showed that ebselen treatment abolished vascular dysfunction in IAV-induced exacerbations of CS-induced lung inflammation indicating it may have potential for the treatment of cardiovascular comorbidities seen in acute exacerbations of COPD (AECOPD).


Assuntos
Fumar Cigarros , Vírus da Influenza A , Influenza Humana , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Animais , Azóis/farmacologia , Fumar Cigarros/efeitos adversos , Humanos , Influenza Humana/complicações , Isoindóis , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Compostos Organosselênicos , Pneumonia/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Nicotiana/efeitos adversos
7.
Br J Pharmacol ; 178(15): 3049-3066, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33817783

RESUMO

BACKGROUND AND PURPOSE: Skeletal muscle dysfunction is a major comorbidity of chronic obstructive pulmonary disease (COPD). This type of muscle dysfunction may be a direct consequence of oxidative insults evoked by cigarette smoke (CS) exposure. The present study examined the effects of a potent Nox inhibitor and reactive oxygen species (ROS) scavenger, apocynin, on CS-induced muscle dysfunction. EXPERIMENTAL APPROACH: Male BALB/c mice were exposed to either room air (sham) or CS generated from nine cigarettes per day, 5 days a week for 8 weeks, with or without the coadministration of apocynin (5 mg·kg-1 , i.p.). C2C12 myotubes exposed to either hydrogen peroxide (H2 O2 ) or water-soluble cigarette smoke extract (CSE) with or without apocynin (500 nM) were used as an experimental model in vitro. KEY RESULTS: Eight weeks of CS exposure caused muscle dysfunction in mice, reflected by 10% loss of muscle mass and 54% loss of strength of tibialis anterior which were prevented by apocynin administration. In C2C12 myotubes, direct exposure to H2 O2 or CSE caused myofibre wasting, accompanied by ~50% loss of muscle-derived insulin-like growth factor (IGF)-1 and two-fold induction of Cybb, independent of cellular inflammation. Expression of myostatin and MAFbx, negative regulators of muscle mass, were up-regulated under H2 O2 but not CSE conditions. Apocynin treatment abolished CSE-induced Cybb expression, preserving muscle-derived IGF-1 expression and signalling pathway downstream of mammalian target of rapamycin (mTOR), thereby preventing myofibre wasting. CONCLUSION AND IMPLICATIONS: Targeted pharmacological inhibition of Nox-derived ROS may alleviate the lung and systemic manifestations in smokers with COPD.


Assuntos
Fumar Cigarros , Acetofenonas , Animais , Fumar Cigarros/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Músculo Esquelético , Fumaça/efeitos adversos
8.
Br J Pharmacol ; 178(8): 1805-1818, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33523477

RESUMO

BACKGROUND AND PURPOSE: It is well established that both smokers and patients with COPD are at a significantly heightened risk of cardiovascular disease (CVD), although the mechanisms underpinning the onset and progression of co-morbid CVD are largely unknown. Here, we explored whether cigarette smoke (CS) exposure impairs vascular function in mice and given the well-known pathological role for oxidative stress in COPD, whether the antioxidant compound ebselen prevents CS-induced vascular dysfunction in mice. EXPERIMENTAL APPROACH: Male BALB/c mice were exposed to either room air (sham) or CS generated from nine cigarettes per day, 5 days a week for 8 weeks. Mice were treated with ebselen (10 mg·kg-1 , oral gavage once daily) or vehicle (5% w/v CM cellulose in water) 1 h prior to the first CS exposure of the day. Upon killing, bronchoalveolar lavage fluid (BALF) was collected to assess pulmonary inflammation, and the thoracic aorta was excised to investigate vascular endothelial and smooth muscle dilator responses ex vivo. KEY RESULTS: CS exposure caused a significant increase in lung inflammation which was reduced by ebselen. CS also caused significant endothelial dysfunction in the thoracic aorta which was attributed to a down-regulation of eNOS expression and increased vascular oxidative stress. Ebselen abolished the aortic endothelial dysfunction seen in CS-exposed mice by reducing the oxidative burden and preserving eNOS expression. CONCLUSION AND IMPLICATIONS: Targeting CS-induced oxidative stress with ebselen may provide a novel means for treating the life-threatening pulmonary and cardiovascular manifestations associated with cigarette smoking and COPD.


Assuntos
Compostos Organosselênicos , Doença Pulmonar Obstrutiva Crônica , Animais , Azóis , Líquido da Lavagem Broncoalveolar , Humanos , Isoindóis , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Compostos Organosselênicos/farmacologia , Fumaça/efeitos adversos , Fumar
9.
Clin Sci (Lond) ; 134(22): 2943-2957, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33125061

RESUMO

Gastrointestinal (GI) dysfunction is a common comorbidity of chronic obstructive pulmonary disease (COPD) for which a major cause is cigarette smoking (CS). The underlying mechanisms and precise effects of CS on gut contractility, however, are not fully characterised. Therefore, the aim of the present study was to investigate whether CS impacts GI function and structure in a mouse model of CS-induced COPD. We also aimed to investigate GI function in the presence of ebselen, an antioxidant that has shown beneficial effects on lung inflammation resulting from CS exposure. Mice were exposed to CS for 2 or 6 months. GI structure was analysed by histology and immunofluorescence. After 2 months of CS exposure, ex vivo gut motility was analysed using video-imaging techniques to examine changes in colonic migrating motor complexes (CMMCs). CS decreased colon length in mice. Mice exposed to CS for 2 months had a higher frequency of CMMCs and a reduced resting colonic diameter but no change in enteric neuron numbers. Ten days cessation after 2 months CS reversed CMMC frequency changes but not the reduced colonic diameter phenotype. Ebselen treatment reversed the CS-induced reduction in colonic diameter. After 6 months CS, the number of myenteric nitric-oxide producing neurons was significantly reduced. This is the first evidence of colonic dysmotility in a mouse model of CS-induced COPD. Dysmotility after 2 months CS is not due to altered neuron numbers; however, prolonged CS-exposure significantly reduced enteric neuron numbers in mice. Further research is needed to assess potential therapeutic applications of ebselen in GI dysfunction in COPD.


Assuntos
Azóis/farmacologia , Fumar Cigarros/efeitos adversos , Trato Gastrointestinal/fisiopatologia , Compostos Organosselênicos/farmacologia , Animais , Contagem de Células , Forma Celular/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/patologia , Colo/fisiopatologia , Sistema Nervoso Entérico/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/patologia , Isoindóis , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Muco/efeitos dos fármacos , Muco/metabolismo , Plexo Mientérico/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
10.
Antioxid Redox Signal ; 32(13): 943-956, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31190552

RESUMO

Aims: Excessive reactive oxygen species (ROS) are detrimental to immune cellular functions that control pathogenic microbes; however, the mechanisms are poorly understood. Our aim was to determine the immunological consequences of increased ROS levels during acute bacterial infection. Results: We used a model of Streptococcus pneumoniae (Spn) lung infection and superoxide dismutase 3-deficient (SOD3-/-) mice, as SOD3 is a major antioxidant enzyme that catalyses the dismutation of superoxide radicals. First, we observed that in vitro, macrophages from SOD3-/- mice generated excessive phagosomal ROS during acute bacterial infection. In vivo, there was a significant reduction in infiltrating neutrophils in the bronchoalveolar lavage fluid and reduced peribronchial and alveoli inflammation in SOD3-/- mice 2 days after Spn infection. Annexin V/propidium iodide staining revealed enhanced apoptosis in neutrophils from Spn-infected SOD3-/- mice. In addition, SOD3-/- mice showed an altered macrophage phenotypic profile, with markedly diminished recruitment of monocytes (CD11clo, CD11bhi) in the airways. Further investigation revealed significantly lower levels of the monocyte chemokine CCL-2, and cytokines IL-23, IL-1ß, and IL-17A in Spn-infected SOD3-/- mice. There were also significantly fewer IL-17A-expressing gamma-delta T cells (γδ T cells) in the lungs of Spn-infected SOD3-/- mice. Innovation: Our data demonstrate that SOD3 deficiency leads to an accumulation of phagosomal ROS levels that initiate early neutrophil apoptosis during pneumococcal infection. Consequent to these events, there was a failure to initiate innate γδ T cell responses. Conclusion: These studies offer new cellular and mechanistic insights into how excessive ROS can regulate innate immune responses to bacterial infection.


Assuntos
Interleucina-17/imunologia , Infecções Pneumocócicas/imunologia , Espécies Reativas de Oxigênio/imunologia , Linfócitos T/imunologia , Animais , Modelos Animais de Doenças , Imunidade Inata/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções Pneumocócicas/patologia , Superóxido Dismutase/deficiência , Superóxido Dismutase/imunologia
11.
Am J Respir Cell Mol Biol ; 62(2): 217-230, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31461300

RESUMO

Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease negatively impacts quality of life and survival. Cigarette smoking (CS) is the major risk factor for chronic obstructive pulmonary disease and skeletal muscle dysfunction; however, how CS affects skeletal muscle function remains enigmatic. To examine the impact of CS on skeletal muscle inflammation and regeneration, male BALB/c mice were exposed to CS for 8 weeks before muscle injury was induced by barium chloride injection, and were maintained on the CS protocol for up to 21 days after injury. Barium chloride injection resulted in architectural damage to the tibialis anterior muscle, resulting in a decrease contractile function, which was worsened by CS exposure. CS exposure caused muscle atrophy (reduction in gross weight and myofiber cross-sectional area) and altered fiber type composition (31% reduction of oxidative fibers). Both contractile function and loss in myofiber cross-sectional area by CS exposure gradually recovered over time. Satellite cells are muscle stem cells that confer skeletal muscle the plasticity to adapt to changing demands. CS exposure blunted Pax7+ centralized nuclei within satellite cells and thus prevented the activation of these muscle stem cells. Finally, CS triggered muscle inflammation; in particular, there was an exacerbated recruitment of F4/80+ monocytic cells to the site of injury along with enhanced proinflammatory cytokine expression. In conclusion, CS exposure amplified the local inflammatory response at the site of skeletal muscle injury, and this was associated with impaired satellite cell activation, leading to a worsened muscle injury and contractile function without detectable impacts on the recovery outcomes.


Assuntos
Fumar Cigarros/efeitos adversos , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Regeneração/fisiologia , Animais , Masculino , Camundongos Endogâmicos BALB C , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Doenças Musculares/metabolismo , Fator de Transcrição PAX7/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Qualidade de Vida , Fumar/fisiopatologia
12.
Sci Rep ; 9(1): 2366, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787331

RESUMO

Toll-like receptor 7 (TLR7) is a pattern recognition receptor that recognizes viral RNA following endocytosis of the virus and initiates a powerful immune response characterized by Type I IFN production and pro-inflammatory cytokine production. Despite this immune response, the virus causes very significant pathology, which may be inflammation-dependent. In the present study, we examined the effect of intranasal delivery of the TLR7 agonist, imiquimod or its topical formulation Aldara, on the inflammation and pathogenesis caused by IAV infection. In mice, daily intranasal delivery of imiquimod prevented peak viral replication, bodyweight loss, airway and pulmonary inflammation, and lung neutrophils. Imiquimod treatment also resulted in a significant reduction in pro-inflammatory neutrophil chemotactic cytokines and prevented the increase in viral-induced lung dysfunction. Various antibody isotypes (IgG1, IgG2a, total IgG, IgE and IgM), which were increased in the BALF following influenza A virus infection, were further increased with imiquimod. While epicutaneous application of Aldara had a significant effect on body weight, it did not reduce neutrophil and eosinophil airway infiltration; indicating less effective drug delivery for this formulation. We concluded that intranasal imiquimod facilitates a more effective immune response, which can limit the pathology associated with influenza A virus infection.


Assuntos
Imiquimode/farmacologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Administração Intranasal , Animais , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A/metabolismo , Vírus da Influenza A/patogenicidade , Pulmão/imunologia , Masculino , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Replicação Viral
13.
Clin Sci (Lond) ; 133(4): 551-564, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30733313

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is a major incurable global health burden and will become the third largest cause of death in the world by 2030. It is well established that an exaggerated inflammatory and oxidative stress response to cigarette smoke (CS) leads to, emphysema, small airway fibrosis, mucus hypersecretion, and progressive airflow limitation. Current treatments have limited efficacy in inhibiting chronic inflammation and consequently do not reverse the pathology that initiates and drives the long-term progression of disease. In particular, there are no effective therapeutics that target neutrophilic inflammation in COPD, which is known to cause tissue damage by degranulation of a suite of proteolytic enzymes including neutrophil elastase (NE). Matrine, an alkaloid compound extracted from Sophora flavescens Ait, has well known anti-inflammatory activity. Therefore, the aim of the present study was to investigate whether matrine could inhibit CS-induced lung inflammation in mice. Matrine significantly reduced CS-induced bronchoalveolar lavage fluid (BALF) neutrophilia and NE activity in mice. The reduction in BALF neutrophils in CS-exposed mice by matrine was not due to reductions in pro-neutrophil cytokines/chemokines, but rather matrine's ability to cause apoptosis of neutrophils, which we demonstrated ex vivo Thus, our data suggest that matrine has anti-inflammatory actions that could be of therapeutic potential in treating CS-induced lung inflammation observed in COPD.


Assuntos
Alcaloides/farmacologia , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Fumar Cigarros , Lesão Pulmonar/prevenção & controle , Pulmão/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Quinolizinas/farmacologia , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Elastase de Leucócito/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Peroxidase/metabolismo , Fumaça , Matrinas
15.
Thorax ; 72(12): 1140-1143, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28202627

RESUMO

Matrix metalloproteinase-9 (MMP-9) is increased in a number of pathological lung conditions, where the proteinase contributes to deleterious remodelling of the airways. While both lung cancer and COPD are associated with increased MMP-9 expression, the cellular and molecular drivers of MMP-9 remain unresolved. In this study, MMP-9 transcript measured within the tumour region from patients with non-small-cell lung cancer (NSCLC) and coexisting COPD was found to be uniformly increased relative to adjacent tumour-free tissue. MMP-9 gene expression and immunohistochemistry identified tumour-associated neutrophils, but not macrophages, as a predominant source of this proteinase. In addition, PTEN gene expression was significantly reduced in tumour and there was evidence of epithelial MMP-9 expression. To explore whether PTEN can regulate epithelial MMP-9 expression, a small interfering (si)RNA knockdown strategy was used in Beas-2B bronchial epithelial cells. PTEN knockdown by siRNA selectively increased MMP-9 expression in response to lipopolysaccharide in a corticosteroid-insensitive manner. In summary, tumour-associated neutrophils represent an important source of MMP-9 in NSCLC, and loss of epithelial PTEN may further augment steroid-insensitive expression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Neutrófilos/enzimologia , PTEN Fosfo-Hidrolase/fisiologia , Doença Pulmonar Obstrutiva Crônica/enzimologia , Humanos
16.
Clin Sci (Lond) ; 130(10): 829-37, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27128803

RESUMO

ß2-adrenoceptor agonists are the mainstay therapy for patients with asthma but their effectiveness in cigarette smoke (CS)-induced lung disease such as chronic obstructive pulmonary disease (COPD) is limited. In addition, bronchodilator efficacy of ß2-adrenoceptor agonists is decreased during acute exacerbations of COPD (AECOPD), caused by respiratory viruses including influenza A. Therefore, the aim of the present study was to assess the effects of the ß2-adrenoceptor agonist salbutamol (SALB) on small airway reactivity using mouse precision cut lung slices (PCLS) prepared from CS-exposed mice and from CS-exposed mice treated with influenza A virus (Mem71, H3N1). CS exposure alone reduced SALB potency and efficacy associated with decreased ß2-adrenoceptor mRNA expression, and increased tumour necrosis factor α (TNFα) and interleukin-1ß (IL-1ß) expression. This impaired relaxation was restored by day 12 in the absence of further CS exposure. In PCLS prepared after Mem71 infection alone, responses to SALB were transient and were not well maintained. CS exposure prior to Mem71 infection almost completely abolished relaxation, although ß2-adrenoceptor and TNFα and IL-1ß expression were unaltered. The present study has shown decreased sensitivity to SALB after CS or a combination of CS and Mem71 occurs by different mechanisms. In addition, the PCLS technique and our models of CS and influenza infection provide a novel setting for assessment of alternative bronchodilators.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Broncodilatadores/uso terapêutico , Vírus da Influenza A , Pulmão/virologia , Fumar/efeitos adversos , Animais , Pulmão/metabolismo , Masculino , Camundongos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores Adrenérgicos/metabolismo , Nicotiana/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo
17.
Clin Sci (Lond) ; 129(9): 785-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26201093

RESUMO

Cigarette smoke (CS) is the major cause of chronic obstructive pulmonary disease (COPD). Interleukin-17A (IL-17A) is a pivotal cytokine that regulates lung immunity and inflammation. The aim of the present study was to investigate how IL-17A regulates CS-induced lung inflammation in vivo. IL-17A knockout (KO) mice and neutralization of IL-17A in wild-type (WT) mice reduced macrophage and neutrophil recruitment and chemokine (C-C motif) ligand 2 (CCL2), CCL3 and matrix metalloproteinase (MMP)-12 mRNA expression in response to acute CS exposure. IL-17A expression was increased in non-obese diabetic (NOD) severe combined immunodeficiency SCID) mice with non-functional B- and T-cells over a 4-week CS exposure period, where macrophages accumulated to the same extent as in WT mice. Gene expression analysis by QPCR (quantitative real-time PCR) of isolated immune cell subsets detected increased levels of IL-17A transcript in macrophages, neutrophils and NK/NKT cells in the lungs of CS-exposed mice. In order to further explore the relative contribution of innate immune cellular sources, intracellular IL-17A staining was performed. In the present study, we demonstrate that CS exposure primes natural killer (NK), natural killer T (NKT) and γδ T-cells to produce more IL-17A protein and CS alone increased the frequency of IL17+ γδ T-cells in the lung, whereas IL-17A protein was not detected in macrophages and neutrophils. Our data suggest that activation of innate cellular sources of IL-17A is an essential mediator of macrophage accumulation in CS-exposed lungs. Targeting non-conventional T-cell sources of IL-17A may offer an alternative strategy to reduce pathogenic macrophages in COPD.


Assuntos
Interleucina-17/imunologia , Macrófagos/imunologia , Nicotiana/química , Pneumonia/imunologia , Fumaça , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Quimiocina CCL2/metabolismo , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Quimiocina CCL3/metabolismo , Citometria de Fluxo , Expressão Gênica/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Interleucina-17/genética , Interleucina-17/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/imunologia , Metaloproteinase 12 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Infiltração de Neutrófilos/imunologia , Pneumonia/genética , Pneumonia/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Am J Respir Cell Mol Biol ; 53(4): 471-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25692207

RESUMO

Small airways are a major site of airflow limitation in chronic obstructive pulmonary disease (COPD). Despite the detrimental effects of long-term smoking in COPD, the effects of acute cigarette smoke (CS) exposure on small airway reactivity have not been fully elucidated. Balb/C mice were exposed to room air (sham) or CS for 4 days to cause airway inflammation. Changes in small airway lumen area in response to contractile agents were measured in lung slices in situ using phase-contrast microscopy. Separate slices were pharmacologically maintained at constant intracellular Ca(2+) using caffeine/ryanodine before contractile measurements. Gene and protein analysis of contractile signaling pathways were performed on separate lungs. Monophasic contraction to serotonin became biphasic after CS exposure, whereas contraction to methacholine was unaltered. This altered pattern of contraction was normalized by caffeine/ryanodine. Expression of contractile agonist-specific receptors was unaltered; however, all isoforms of the ryanodine receptor were down-regulated. This is the first study to show that acute CS exposure selectively alters small airway contraction to serotonin and down-regulates ryanodine receptors involved in maintaining Ca(2+) oscillations in airway smooth muscle. Understanding the contribution of ryanodine receptors to altered airway reactivity may inform the development of novel treatment strategies for COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Fumar/efeitos adversos , Resistência das Vias Respiratórias , Animais , Sinalização do Cálcio , Masculino , Cloreto de Metacolina/farmacologia , Camundongos Endogâmicos BALB C , Contração Muscular , Músculo Liso/fisiopatologia , Serotonina/farmacologia
19.
PLoS One ; 9(11): e113180, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25405776

RESUMO

While global success in cessation advocacy has seen smoking rates fall in many developed countries, persistent lung inflammation in ex-smokers is an increasingly important clinical problem whose mechanistic basis remains poorly understood. In this study, candidate effector mechanisms were assessed in mice exposed to cigarette smoke (CS) for 4 months following cessation from long term CS exposure. BALF neutrophils, CD4+ and CD8+ T cells and lung innate NK cells remained significantly elevated following smoking cessation. Analysis of neutrophil mobilization markers showed a transition from acute mediators (MIP-2α, KC and G-CSF) to sustained drivers of neutrophil and macrophage recruitment and activation (IL-17A and Serum Amyoid A (SAA)). Follicle-like lymphoid aggregates formed with CS exposure and persisted with cessation, where they were in close anatomical proximity to pigmented macrophages, whose number actually increased 3-fold following CS cessation. This was associated with the elastolytic protease, MMP-12 (macrophage metallo-elastase) which remained significantly elevated post-cessation. Both GM-CSF and CSF-1 were significantly increased in the CS cessation group relative to the control group. In conclusion, we show that smoking cessation mediates a transition to accumulation of pigmented macrophages, which may contribute to the expanded macrophage population observed in COPD. These macrophages together with IL-17A, SAA and innate NK cells are identified here as candidate persistence determinants and, we suggest, may represent specific targets for therapies directed towards the amelioration of chronic airway inflammation.


Assuntos
Interleucina-17/sangue , Células Matadoras Naturais/fisiologia , Macrófagos Alveolares/fisiologia , Modelos Animais , Neutrófilos/fisiologia , Proteína Amiloide A Sérica/metabolismo , Abandono do Hábito de Fumar , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Citometria de Fluxo , Células Matadoras Naturais/patologia , Macrófagos Alveolares/patologia , Masculino , Metaloproteinase 12 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/patologia , Reação em Cadeia da Polimerase em Tempo Real , Poluição por Fumaça de Tabaco/efeitos adversos
20.
FASEB J ; 28(9): 3867-77, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24846388

RESUMO

Serum amyloid A (SAA) is expressed locally in chronic inflammatory conditions such as chronic obstructive pulmonary disease (COPD), where macrophages that do not accord with the classic M1/M2 paradigm also accumulate. In this study, the role of SAA in regulating macrophage differentiation was investigated in vitro using human blood monocytes from healthy subjects and patients with COPD and in vivo using an airway SAA challenge model in BALB/c mice. Differentiation of human monocytes with SAA stimulated the proinflammatory monokines IL-6 and IL-1ß concurrently with the M2 markers CD163 and IL-10. Furthermore, SAA-differentiated macrophages stimulated with lipopolysaccharide (LPS) expressed markedly higher levels of IL-6 and IL-1ß. The ALX/FPR2 antagonist WRW4 reduced IL-6 and IL-1ß expression but did not significantly inhibit phagocytic and efferocytic activity. In vivo, SAA administration induced the development of a CD11c(high)CD11b(high) macrophage population that generated higher levels of IL-6, IL-1ß, and G-CSF following ex vivo LPS challenge. Blocking CSF-1R signaling effectively reduced the number of CD11c(high)CD11b(high) macrophages by 71% and also markedly inhibited neutrophilic inflammation by 80%. In conclusion, our findings suggest that SAA can promote a distinct CD11c(high)CD11b(high) macrophage phenotype, and targeting this population may provide a novel approach to treating chronic inflammatory conditions associated with persistent SAA expression.


Assuntos
Diferenciação Celular , Pulmão/citologia , Macrófagos/citologia , Doença Pulmonar Obstrutiva Crônica/patologia , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animais , Western Blotting , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Hematopoese , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Neutrófilos/citologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagocitose/fisiologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Amiloide A Sérica/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...