Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2415: 1-17, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34972942

RESUMO

The early embryos of sea urchins and other echinoderms have served as experimental models for the study of cell division since the nineteenth century. Their rapid development, optical clarity, and ease of manipulation continue to offer advantages for studying spindle assembly and cytokinesis. In the absence of transgenic lines, alternative strategies must be employed to visualize microtubules and actin. Here, we describe methods to visualize actin and microtubule using either purified, recombinant proteins, or probes in in vitro-transcribed mRNAs.


Assuntos
Microtúbulos , Mitose , Animais , Células Germinativas , Meiose , Microtúbulos/metabolismo , Ouriços-do-Mar , Fuso Acromático/metabolismo
2.
Front Cell Dev Biol ; 8: 591141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33282870

RESUMO

In motile cells, the activities of the different Rho family GTPases are spatially segregated within the cell, and during cytokinesis there is evidence that this may also be the case. But while Rho's role as the central organizer for contractile ring assembly is well established, the role of Rac and the branched actin networks it promotes is less well understood. To characterize the contributions of these proteins during cytokinesis, we manipulated Rac and Arp2/3 activity during mitosis and meiosis in sea urchin embryos and sea star oocytes. While neither Rac nor Arp2/3 were essential for early embryonic divisions, loss of either Rac or Arp2/3 activity resulted in polar body defects. Expression of activated Rac resulted in cytokinesis failure as early as the first division, and in oocytes, activated Rac suppressed both the Rho wave that traverses the oocyte prior to polar body extrusion as well as polar body formation itself. However, the inhibitory effect of Rac on cytokinesis, polar body formation and the Rho wave could be suppressed by effector-binding mutations or direct inhibition of Arp2/3. Together, these results suggest that Rac- and Arp2/3 mediated actin networks may directly antagonize Rho signaling, thus providing a potential mechanism to explain why Arp2/3-nucleated branched actin networks must be suppressed at the cell equator for successful cytokinesis.

3.
Methods Cell Biol ; 151: 379-397, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30948020

RESUMO

The rapid development, simplicity and optical clarity of the sea urchin embryo make it an excellent model system for studying the dynamic events of early development. An ever-growing palette of fluorescent proteins and biosensors can now be applied to studying sea urchin development, and there are now a wide variety of imaging modes that can be employed to image sea urchin embryogenesis. However, when performing live-cell imaging, one must take into consideration the sensitivity of embryos (and fluorescent probes) to the intense light associated with confocal microscopes. Here, we discuss general considerations for keeping embryos viable on the microscope stage, as well as probes for imaging cellular membranes and the cytoskeleton. We compare the relative merits of different confocal microscopes for live imaging of embryos and describe the potential for live-cell super-resolution microscopy.


Assuntos
Desenvolvimento Embrionário/genética , Microscopia Confocal/métodos , Imagem Óptica/métodos , Ouriços-do-Mar/ultraestrutura , Animais , Citoesqueleto/ultraestrutura , Embrião não Mamífero , Corantes Fluorescentes/química , Microtúbulos/ultraestrutura , Ouriços-do-Mar/crescimento & desenvolvimento
4.
Dev Biol ; 437(2): 140-151, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29555242

RESUMO

In the sea urchin embryo, gastrulation is characterized by the ingression and directed cell migration of primary mesenchyme cells (PMCs), as well as the primary invagination and convergent extension of the endomesoderm. Like all cell shape changes, individual and collective cell motility is orchestrated by Rho family GTPases and their modulation of the actomyosin cytoskeleton. And while endomesoderm specification has been intensively studied in echinoids, much less is known about the proximate regulators driving cell motility. Toward these ends, we employed anti-sense morpholinos, mutant alleles and pharmacological inhibitors to assess the role of Cdc42 during sea urchin gastrulation. While inhibition of Cdc42 expression or activity had only mild effects on PMC ingression, PMC migration, alignment and skeletogenesis were disrupted in the absence of Cdc42, as well as elongation of the archenteron. PMC migration and patterning of the larval skeleton relies on the extension of filopodia, and Cdc42 was required for filopodia in vivo as well as in cultured PMCs. Lastly, filopodial extension required both Arp2/3 and formin actin-nucleating factors, supporting models of filopodial nucleation observed in other systems. Together, these results suggest that Cdc42 plays essential roles during PMC cell motility and organogenesis.


Assuntos
Mesoderma/metabolismo , Morfogênese/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Técnicas de Cultura de Células , Movimento Celular/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/citologia , Reação em Cadeia da Polimerase em Tempo Real , Ouriços-do-Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...