Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Hum Antibodies ; 29(4): 243-248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34151785

RESUMO

BACKGROUND: Type 2 diabetes as the most prevalent metabolic disorder, is one of the major causes of morbidity and mortality worldwide. Recent studies suggest that body microbiota may play a role in developing metabolic disorders including type 2 diabetes. The objective of the present study was to investigate the blood microbiota composition in Iranian pre-diabetic and type 2 diabetic patients compared to healthy individuals. METHODS: Blood samples were taken after 12-h fasting from 90 participants, 30 healthy individuals, 30 type 2 diabetes patients and 30 pre-diabetic participants. The buffy coat layer separated by centrifugation at 800 and DNA was extracted using a column-based method. Composition and load of blood microbiota was evaluated by real-time PCR method using genus specific 16S rRNA primers. RESULTS: The load of Akkermansia, and Faecalibacterium was higher in normal volunteers compared to pre-diabetic and type 2 diabetes group (p< 0.05).The load of Bifidobacterium was higher in normal volunteers compared to type 2 diabetes patients (p= 0.02). In contrast, the load of Lactobacillus and Escherichia coli was higher in pre-diabetics and type 2 diabetes patients compared to normal volunteers (p< 0.05).The load of Bacteroides fragilis was not statistically different between studied groups but it was higher in males compared to female group (p= 0.04). the load of other bacteria was not significantly different between male and female participants. CONCLUSION: There is difference between microbiota composition in white blood cells of pre-diabetic and type 2 diabetes patients compared to healthy people. Determination of blood microbiota pattern may have a role in diagnosis and preventive of type 2 diabetes in a certain population. For more clarification about correlation between blood microbiota and type 2 diabetes, larger studies with more participants in different ethnical populations is suggested.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Microbiota , Estado Pré-Diabético , Feminino , Microbioma Gastrointestinal/genética , Humanos , Irã (Geográfico) , Masculino , Microbiota/genética , RNA Ribossômico 16S/genética
3.
Photodiagnosis Photodyn Ther ; 32: 102074, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33137496

RESUMO

Antimicrobial photodynamic therapy (aPDT) has drawn increasing attention for its potential to effectively kill multidrug-resistant pathogenic bacteria and also for its low tendency to induce drug resistance. Antimicrobial photodynamic therapy (aPDT) is the application of photoactive dye followed by light irradiation that leads to the death of microbial cells mainly by reactive oxygen species (ROS) production in the presence of oxygen molecules. Methylene Blue (MB) as a photosensitizer is a hydrophobic drug molecule and prone to aggregation and dimer formation which lead to its low phototoxicity. Rutin, a flavonoid compound which is derived from plants such as wheat, apple, and tea has many properties such as antibacterial activity. In this study, we investigated the effect of rutin as a flavonoid compound on photodynamic inactivation by MB on Pseudomonas aeruginosa and Staphylococcus aureus. After performing the Minimum Inhibitory Concentration (MIC) assay (to measure minimum inhibitory concentration) and the MTT assay (to evaluate methylene blue toxicity), the effect of aPDT at 660 nm and pretreatment or post treatment with rutin on bacteria in the forms of planktonic and biofilm were investigated. The results showed that by a combination of rutin (800 µg/mL) with methylene blue (MB 8 µg/mL) as a photosensitizer and aPDT (660 nm, 5 min), there is a more reduction in the number of bacteria in the planktonic condition and bacterial biofilm production in comparison to MB alone. MB-aPDT showed no toxic effect against human dermal fibroblast with the proposed strategy which could suggest its application with rutin as a novel approach in the treatment of bacteria in wound infection.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Biofilmes , Flavonoides , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Pseudomonas aeruginosa , Rutina/farmacologia , Staphylococcus aureus
4.
J Diabetes Metab Disord ; 19(2): 1199-1203, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33520834

RESUMO

BACKGROUND: Type 2 diabetes, as the most prevalent metabolic disorder, is one of the leading causes of death worldwide. Recent studies showed a significant association between intestinal microbiota and type 2 diabetes. These studies have shared evidences that alteration in the composition of intestinal microbiota can disrupt the balance of the host homeostasis and lead to metabolic disorders such as type 2 diabetes. In the present study, we compared the intestinal microbiota composition in three groups of type 2 diabetes patients, pre-diabetic patients and healthy individuals of Iranian population. METHODS: After obtaining informed consent, stool samples were collected from 90 individuals of three studied groups. The DNA was extracted using column-based method. Intestinal microbiota composition was evaluated by quantitative real-time PCR using specific bacterial 16S rRNA primers. The difference of bacterial load was compared between three groups. RESULTS: The prevalence of Akkermansia muciniphila and Bifidobacteria species in healthy group was higher than type 2 diabetes group (P Value 0.006 and 0.001, respectively). In contrast, the load of Lactobacillus (P Value 0.044), Escherichia coli (P Value 0.005), and Bacteroides fragilis (P Value 0.017) in type 2 diabetes group, and the frequency of E. coli (P Value 0.001) and Bacteroides fragilis (P Value 0.004) in pre-diabetic group was significantly higher than healthy group. Moreover, the frequency of Faecalibacterium prausnitzii in healthy group was significantly higher compared to two other groups (P Value 0.005). CONCLUSION: There is a correlation between intestinal microbiota composition and type 2 diabetes. Determination and restoration of this microbiota composition pattern may have a possible role in prevention and control of type 2 diabetes in a certain population.

5.
Iran J Microbiol ; 11(6): 520-526, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32148684

RESUMO

BACKGROUND AND OBJECTIVES: Recent reports indicate high prevalence of fungal infections due to non-albicans Candida spp. which are present in various environments such as raw milk. The quality of milk for fungal normal flora was investigated in this study. MATERIALS AND METHODS: A total of 262 milk samples were collected directly from milk collection tanks indesignated dairy farms and cultured in SDA media. By further analysis of grown yeasts, 69 non-albicans Candida strains were identified. Antifungal susceptibility of the isolated species, were evaluated against amphotericin B, itraconazole, fluconazole and flucytosine. Fifty two non-albicans clinical samples isolated from human blood have been evaluated along. RESULTS: Antifungal susceptibility evaluation in non-albicans strains isolated from milk revealed Candida glabrata and Candida tropicalis to be 100% sensitive to flucytosine and fluconazole. Candida krusei showed 94% and 80% sensitivity to flucytosine and fluconazole respectively. Candida parapsilosis indicated 72.72% sensitivity to fluconazole. CONCLUSION: Evaluation of non-albicans Candida species in raw milk and antifungal susceptibility patterns of these isolates-compare with non-albicansisolates from human blood, may help physicians to choose an appropriate medication for diseases needing long-term treatment, especially for diseases caused by local strains.

6.
Int J Biol Macromol ; 120(Pt B): 1801-1809, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30248429

RESUMO

Due to the increasing application of oil and petroleum products, increased environmental contamination has become a matter of concern. Bio-desulfurization process may be used to eliminate sulfur from fossil fuels in the moderate condition. In this study, a thermophilic bacterium was isolated that was able to desulfurize dibenzothiophene. 16S rRNA sequencing indicated that this strain is related closely to Bacillus thermoamylovorans (97%). This strain grew in Basal salt medium containing DBT (100 mgl-1) as the only sulfur source, at 55°C and showed maximum growth (OD660 = 0.850) following 72 h incubation time. 2­hydroxybiphenyl was produced at the maximal concentration (26.13 ±â€¯0.12 mgl-1) at 72 h. Bio-desulfurization and growth rate factors were optimized using response surface methodology. Starch/Fe3O4 and starch/Fe nanoparticles were used for enhancement of BDS efficiency. The size of starch/Fe3O4 and starch/Fe nanoparticles were 20 and 30-40 nm, respectively, as described by using scanning electron microscope and transmission electron microscope. The results showed that the immobilized cells by starch/Fe3O4 and starch/Fe nanoparticles had higher desulfurization capacity, about 10% and 22% more, respectively. Also, BDS in a bioreactor in the presence of nanoparticles was increased 25% with respect of the process occurred in the flask.


Assuntos
Bacillus/metabolismo , Ferro/metabolismo , Nanopartículas Metálicas , Amido/metabolismo , Enxofre/metabolismo , Bacillus/citologia , Bacillus/efeitos dos fármacos , Reatores Biológicos/microbiologia , Proliferação de Células/efeitos dos fármacos , NAD/farmacologia , Enxofre/isolamento & purificação , Temperatura
7.
Protein Expr Purif ; 145: 1-6, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29246516

RESUMO

In the production process of recombinant Hepatitis B surface antigen (rHBsAg) various separation techniques are used to purify this virus-like particle (VLP). In this study, we developed antibody-conjugated super-paramagnetic Fe3O4/SiO2 core-shell nanoparticles as a highly selective method for isolation of expressed rHBsAg in yeast Pichia pastoris. For this purpose, first, iron oxide magnetic nanoparticles (MNPs) were prepared by co-precipitation method in alkali media and coated with silica. Then the surface was activated by amine groups and conjugated with oxidized antibodies. X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) were used to study the physical properties of MNPs. To evaluate the efficacy of these MNPs as a purification technique successfully synthesized MNPs were added to the rHBsAg sample to couple with the antigen and then be isolated based on their magnetic property. In the present research, in the optimum condition, we could isolate 65% of total rHBsAg from the final vaccine sample with purity above 95%. In this procedure, the maximum obtained specific yield (mg HBsAg/mg MNPs) was equal to 37.6. These results underline the potential application of the immune-magnetic separation (IMS) in the future bioseparation systems.


Assuntos
Anticorpos Anti-Hepatite B/genética , Antígenos de Superfície da Hepatite B/isolamento & purificação , Vírus da Hepatite B/metabolismo , Separação Imunomagnética/métodos , Nanopartículas de Magnetita/química , Antígenos de Superfície da Hepatite B/química , Antígenos de Superfície da Hepatite B/imunologia , Pichia/genética , Proteínas Recombinantes/isolamento & purificação
8.
Iran J Basic Med Sci ; 20(12): 1331-1338, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29238468

RESUMO

OBJECTIVES: Pyocyanin is a blue-greenish redox-active pigment, produced by Pseudomonas aeruginosa, with a wide range of biological and biotechnological applications. Pyocyanin biosynthesis is regulated by the quorum-sensing (QS) system in which the expression of QS genes and QS-controlled virulence genes may be affected by serum as a complex medium. In the current study, effects of adult bovine serum (ABS) and fetal bovine serum (FBS) on the production of pyocyanin were examined in order to develop it. MATERIALS AND METHODS: The presence of pyocyanin-producing specific genes and proteins in clinical and soil isolates of P. aeruginosa was confirmed using PCR and SDS-PAGE. Isolates were inoculated to media containing different concentrations of complement-active/-inactivated ABS or FBS and pyocyanin concentration was measured by spectrophotometry. Extracted pigment was characterized by using UV-Visible spectrophotometry. Titration of ABS antibodies against studied isolates was performed by the tube agglutination test. RESULTS: Adding ABS to P. aeruginosa culture medium decreased pyocyanin production compared to the control, while its production increased in FBS-containing media (113.21±2.581 vs. 55.26±0.827 µg.ml-1 and 126.80±2.036 vs. 30.56±0.382 µg.ml-1 of C11 and E8 pyocyanin concentration in the presence of 10% FBS vs. control, respectively). CONCLUSION: In this study, due to the presence of inhibitors such as complement proteins and antibodies in ABS samples, the use of FBS devoid of antibodies was effective to increase pyocyanin production in studied isolates.

9.
Comput Biol Chem ; 67: 174-181, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28129568

RESUMO

Recently, the quick spreads of broad-spectrum beta-lactams antibiotic resistance in pathogenic strains of bacteria have become a major global health problem. These new emerging resistances cause ineffectiveness of antibiotics and increasing the severity of diseases and treatment costs. Among different and diverse resistance targets, we chose a class A beta lactamase, CTX-M-9, with the aim of identifying new chemical entities to be used for further rational drug design. Based on this purpose, a set of 5000 molecules from the Zinc database have been screened by docking experiments using AutoDock Vina software. The best ranked compound, with respect of the previously proved inhibitor compound 19, was further tested by molecular dynamics (MD) simulation. Our molecular modeling analysis demonstrates that ZINC33264777 has ideal characteristics a potent beta lactamase CTX-M-9 inhibitor. In the free form of beta lactamase, NMR relaxation studies showed the extensive motions near the active site and in the Ω-loop. However, our molecular dynamics studies revealed that in the compound 1: beta lactamase complex, the flexibility of Ω-loop was restricted.


Assuntos
Benzimidazóis/química , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Tetrazóis/química , Resistência beta-Lactâmica/efeitos dos fármacos , Inibidores de beta-Lactamases/química , beta-Lactamases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica
10.
Int J Syst Evol Microbiol ; 64(Pt 10): 3565-3570, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25062699

RESUMO

A novel Gram-stain-negative, aerobic, non-endospore-forming, non-pigmented, rod-shaped, slightly halophilic bacterium, designated GBPy5(T), was isolated from aquatic plants of the Gomishan wetland, Iran. Cells of strain GBPy5(T) were motile. Growth occurred with between 1 and 10% (w/v) NaCl and the isolate grew optimally with 3% (w/v) NaCl. The optimum pH and temperature for growth of the strain were pH 8.0 and 30 °C, respectively, while it was able to grow over a pH range of 6.5-9.0 and a temperature range of 4-35 °C. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain GBPy5(T) is a member of the genus Pseudomonas forming a monophyletic branch. The novel strain exhibited 16S rRNA gene sequence similarity of 95.4% with type strains of Pseudomonas guariconensis PCAVU11(T) and Pseudomonas sabulinigri J64(T), respectively. The major cellular fatty acids of the isolate were C18:1ω7c (37.8%), C16:0 (14.9%), C16:1ω7c (12.9%), C12:0 3-OH (7.1%) and C12:0 (7.0%). The polar lipid pattern of strain GBPy5(T) comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and one phospholipid. Ubiquinone 9 (Q-9) was the predominant lipoquinone. The G+C content of the genomic DNA of strain GBPy5(T) was 59.2 mol%. On the basis of the phenotypic and phylogenetic data, strain GBPY5(T) represents a novel species of the genus Pseudomonas, for which the name Pseudomonas salegens sp. nov. is proposed. The type strain is GBPy5(T) ( = IBRC-M 10762(T) = CECT 8338(T)).


Assuntos
Filogenia , Pseudomonas/classificação , Áreas Alagadas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Irã (Geográfico) , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pseudomonas/genética , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
11.
Int J Syst Evol Microbiol ; 64(Pt 3): 1000-1005, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24425822

RESUMO

A novel Gram-stain-negative, slightly halophilic bacterium, designated strain GASx41(T), was isolated from soil of the coastal-marine wetland Gomishan in Iran. Cells of strain GASx41(T) were curved, ring-like or horseshoe-shaped rods and non-motile. Strain GASx41(T) was strictly aerobic, and catalase- and oxidase-positive. The strain was able to grow at NaCl concentrations of 1-10% (w/v), with optimum growth occurring at 2.5-3% (w/v) NaCl. The optimum temperature and pH for growth were 25-30 °C and pH 7.5-8.0. On the basis of 16S rRNA gene sequence analysis, strain GASx41(T) was shown to belong to the genus Cyclobacterium within the phylum Bacteroidetes and showed closest phylogenetic similarity to 'Cyclobacterium jeungdonense' HMD3055 (98.0%). The DNA G+C content of strain GASx41(T) was 48.1 mol%. The major cellular fatty acids of strain GASx41(T) were iso-C15 : 0, summed feature 4 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), anteiso-C15 : 0 2-OH, anteiso-C15 : 0 and iso-C17 : 0 3-OH, and its polar lipid pattern consisted of phosphatidylethanolamine, phosphatidylcholine and 12 unknown lipids. The only quinone present was menaquinone 7 (MK-7). All these features confirmed the placement of isolate GASx41(T) within the genus Cyclobacterium. On the basis of evidence from this study, a novel species of the genus Cyclobacterium, Cyclobacterium halophilum sp. nov., is proposed, with strain GASx41(T) ( = IBRC-M 10761(T) = CECT 8341(T)) as the type strain.


Assuntos
Bacteroidetes/classificação , Filogenia , Microbiologia do Solo , Áreas Alagadas , Técnicas de Tipagem Bacteriana , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Irã (Geográfico) , Dados de Sequência Molecular , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
12.
Iran J Basic Med Sci ; 17(11): 844-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25691925

RESUMO

OBJECTIVES: This study highlights xylanase overproduction from Bacillus mojavensis via UV mutagenesis and optimization of the production process. MATERIALS AND METHODS: Bacillus mojavenis PTCC 1723 underwent UV radiation. Mutants' primary screening was based on the enhanced Hollow Zone Diameter/ Colony Diameter Ration (H/C ratios) of the colonies in comparison with the wild strain on Xylan agar medium. Secondly, enzyme production of mutants was compared with parental strain. Optimization process using lignocellulolytic wastes was designed with Minitab software for the best overproducer mutant. RESULTS: H/C ratio of 3.1 was measured in mutant number 17 in comparison with the H/C ratio of the parental strain equal to 1.6. Selected mutant produced 330.56 IU/ml xylanase. It was 3.45 times more enzyme than the wild strain with 95.73 IU/ml xylanase. Optimization resulted 575 IU/ml xylanase, with wheat bran as the best carbon source, corn steep liquor as the best nitrogen source accompanied with natural bakery yeast powder, in a medium with pH 7, after 48 hr incubation at 37°C, and the shaking rate of 230 rpm. Optimum xylanase activity was assayed at pH 7 and 40°C. Enzyme stability pattern shows it retains 62% of its initial activity at pH 9 after 3 hr. It also maintains up to 66% and 59% of its initial activity after 1 hr of pre-incubation at 70°C and 80°C. CONCLUSION: Mutation and optimization caused 5.9 times more enzyme yield by mutant strain. Also this enzyme can be categorized as an alkali-tolerant and thermo-stable xylanase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...