Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(4): 5610-5619, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876160

RESUMO

We establish experimentally the suitability of an all-silicon optical modulator to support future ultra-high-capacity coherent optical transmission links beyond 400 Gb/s. We present single-carrier data transmission from 400 Gb/s to 600 Gb/s using an all-silicon IQ modulator produced with a generic foundry process. The operating point of the silicon photonic transmitter is carefully optimized to find the best efficiency bandwidth trade-off. We present a methodology to split pre-compensation between digital and optical stages. For the 400 Gb/s transmission, we achieved 60 Gbaud dual-polarization (DP)-16QAM, reaching a distance of 1,520 km. Transmission of 500 Gb/s was further tested using 75 Gbaud 16QAM and 60 Gbaud 32QAM, reaching 1,120 km and 480 km, respectively. We finally demonstrated 72 Gbaud DP-32QAM (720 Gb/s) transmitted over 160 km and 84 Gbaud DP-16QAM (672 Gb/s) transmitted over 720 km, meeting the threshold for 20% forward error correction overhead and achieving net rates of 600 Gb/s and 576 Gb/s, respectively. To the best of our knowledge, these are the highest baud-rate coherent transmission results achieved using an all-silicon IQ modulator. We have demonstrated that we can reap the myriad advantages of SiP integration for transmission at extreme bit rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...